source: gpxe_study/kernel_2.6.20_src/sis900.c @ 3

Last change on this file since 3 was 2, checked in by jazz, 17 years ago
  • Inital version of gPXE Study
File size: 72.6 KB
Line 
1/* sis900.c: A SiS 900/7016 PCI Fast Ethernet driver for Linux.
2   Copyright 1999 Silicon Integrated System Corporation
3   Revision:  1.08.10 Apr. 2 2006
4
5   Modified from the driver which is originally written by Donald Becker.
6
7   This software may be used and distributed according to the terms
8   of the GNU General Public License (GPL), incorporated herein by reference.
9   Drivers based on this skeleton fall under the GPL and must retain
10   the authorship (implicit copyright) notice.
11
12   References:
13   SiS 7016 Fast Ethernet PCI Bus 10/100 Mbps LAN Controller with OnNow Support,
14   preliminary Rev. 1.0 Jan. 14, 1998
15   SiS 900 Fast Ethernet PCI Bus 10/100 Mbps LAN Single Chip with OnNow Support,
16   preliminary Rev. 1.0 Nov. 10, 1998
17   SiS 7014 Single Chip 100BASE-TX/10BASE-T Physical Layer Solution,
18   preliminary Rev. 1.0 Jan. 18, 1998
19
20   Rev 1.08.10 Apr.  2 2006 Daniele Venzano add vlan (jumbo packets) support
21   Rev 1.08.09 Sep. 19 2005 Daniele Venzano add Wake on LAN support
22   Rev 1.08.08 Jan. 22 2005 Daniele Venzano use netif_msg for debugging messages
23   Rev 1.08.07 Nov.  2 2003 Daniele Venzano <venza@brownhat.org> add suspend/resume support
24   Rev 1.08.06 Sep. 24 2002 Mufasa Yang bug fix for Tx timeout & add SiS963 support
25   Rev 1.08.05 Jun.  6 2002 Mufasa Yang bug fix for read_eeprom & Tx descriptor over-boundary
26   Rev 1.08.04 Apr. 25 2002 Mufasa Yang <mufasa@sis.com.tw> added SiS962 support
27   Rev 1.08.03 Feb.  1 2002 Matt Domsch <Matt_Domsch@dell.com> update to use library crc32 function
28   Rev 1.08.02 Nov. 30 2001 Hui-Fen Hsu workaround for EDB & bug fix for dhcp problem
29   Rev 1.08.01 Aug. 25 2001 Hui-Fen Hsu update for 630ET & workaround for ICS1893 PHY
30   Rev 1.08.00 Jun. 11 2001 Hui-Fen Hsu workaround for RTL8201 PHY and some bug fix
31   Rev 1.07.11 Apr.  2 2001 Hui-Fen Hsu updates PCI drivers to use the new pci_set_dma_mask for kernel 2.4.3
32   Rev 1.07.10 Mar.  1 2001 Hui-Fen Hsu <hfhsu@sis.com.tw> some bug fix & 635M/B support
33   Rev 1.07.09 Feb.  9 2001 Dave Jones <davej@suse.de> PCI enable cleanup
34   Rev 1.07.08 Jan.  8 2001 Lei-Chun Chang added RTL8201 PHY support
35   Rev 1.07.07 Nov. 29 2000 Lei-Chun Chang added kernel-doc extractable documentation and 630 workaround fix
36   Rev 1.07.06 Nov.  7 2000 Jeff Garzik <jgarzik@pobox.com> some bug fix and cleaning
37   Rev 1.07.05 Nov.  6 2000 metapirat<metapirat@gmx.de> contribute media type select by ifconfig
38   Rev 1.07.04 Sep.  6 2000 Lei-Chun Chang added ICS1893 PHY support
39   Rev 1.07.03 Aug. 24 2000 Lei-Chun Chang (lcchang@sis.com.tw) modified 630E eqaulizer workaround rule
40   Rev 1.07.01 Aug. 08 2000 Ollie Lho minor update for SiS 630E and SiS 630E A1
41   Rev 1.07    Mar. 07 2000 Ollie Lho bug fix in Rx buffer ring
42   Rev 1.06.04 Feb. 11 2000 Jeff Garzik <jgarzik@pobox.com> softnet and init for kernel 2.4
43   Rev 1.06.03 Dec. 23 1999 Ollie Lho Third release
44   Rev 1.06.02 Nov. 23 1999 Ollie Lho bug in mac probing fixed
45   Rev 1.06.01 Nov. 16 1999 Ollie Lho CRC calculation provide by Joseph Zbiciak (im14u2c@primenet.com)
46   Rev 1.06 Nov. 4 1999 Ollie Lho (ollie@sis.com.tw) Second release
47   Rev 1.05.05 Oct. 29 1999 Ollie Lho (ollie@sis.com.tw) Single buffer Tx/Rx
48   Chin-Shan Li (lcs@sis.com.tw) Added AMD Am79c901 HomePNA PHY support
49   Rev 1.05 Aug. 7 1999 Jim Huang (cmhuang@sis.com.tw) Initial release
50*/
51
52#include <linux/module.h>
53#include <linux/moduleparam.h>
54#include <linux/kernel.h>
55#include <linux/string.h>
56#include <linux/timer.h>
57#include <linux/errno.h>
58#include <linux/ioport.h>
59#include <linux/slab.h>
60#include <linux/interrupt.h>
61#include <linux/pci.h>
62#include <linux/netdevice.h>
63#include <linux/init.h>
64#include <linux/mii.h>
65#include <linux/etherdevice.h>
66#include <linux/skbuff.h>
67#include <linux/delay.h>
68#include <linux/ethtool.h>
69#include <linux/crc32.h>
70#include <linux/bitops.h>
71#include <linux/dma-mapping.h>
72
73#include <asm/processor.h>      /* Processor type for cache alignment. */
74#include <asm/io.h>
75#include <asm/irq.h>
76#include <asm/uaccess.h>  /* User space memory access functions */
77
78#include "sis900.h"
79
80#define SIS900_MODULE_NAME "sis900"
81#define SIS900_DRV_VERSION "v1.08.10 Apr. 2 2006"
82
83static char version[] __devinitdata =
84KERN_INFO "sis900.c: " SIS900_DRV_VERSION "\n";
85
86static int max_interrupt_work = 40;
87static int multicast_filter_limit = 128;
88
89static int sis900_debug = -1; /* Use SIS900_DEF_MSG as value */
90
91#define SIS900_DEF_MSG \
92  (NETIF_MSG_DRV    | \
93   NETIF_MSG_LINK   | \
94   NETIF_MSG_RX_ERR | \
95   NETIF_MSG_TX_ERR)
96
97/* Time in jiffies before concluding the transmitter is hung. */
98#define TX_TIMEOUT  (4*HZ)
99
100enum {
101  SIS_900 = 0,
102  SIS_7016
103};
104static const char * card_names[] = {
105  "SiS 900 PCI Fast Ethernet",
106  "SiS 7016 PCI Fast Ethernet"
107};
108static struct pci_device_id sis900_pci_tbl [] = {
109  {PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_900,
110   PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_900},
111  {PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_7016,
112   PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_7016},
113  {0,}
114};
115MODULE_DEVICE_TABLE (pci, sis900_pci_tbl);
116
117static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex);
118
119static const struct mii_chip_info {
120  const char * name;
121  u16 phy_id0;
122  u16 phy_id1;
123  u8  phy_types;
124#define HOME  0x0001
125#define LAN 0x0002
126#define MIX 0x0003
127#define UNKNOWN 0x0
128} mii_chip_table[] = {
129  { "SiS 900 Internal MII PHY",     0x001d, 0x8000, LAN },
130  { "SiS 7014 Physical Layer Solution",   0x0016, 0xf830, LAN },
131  { "SiS 900 on Foxconn 661 7MI",         0x0143, 0xBC70, LAN },
132  { "Altimata AC101LF PHY",               0x0022, 0x5520, LAN },
133  { "ADM 7001 LAN PHY",     0x002e, 0xcc60, LAN },
134  { "AMD 79C901 10BASE-T PHY",      0x0000, 0x6B70, LAN },
135  { "AMD 79C901 HomePNA PHY",   0x0000, 0x6B90, HOME},
136  { "ICS LAN PHY",      0x0015, 0xF440, LAN },
137  { "ICS LAN PHY",      0x0143, 0xBC70, LAN },
138  { "NS 83851 PHY",     0x2000, 0x5C20, MIX },
139  { "NS 83847 PHY",                       0x2000, 0x5C30, MIX },
140  { "Realtek RTL8201 PHY",    0x0000, 0x8200, LAN },
141  { "VIA 6103 PHY",     0x0101, 0x8f20, LAN },
142  {NULL,},
143};
144
145struct mii_phy {
146  struct mii_phy * next;
147  int phy_addr;
148  u16 phy_id0;
149  u16 phy_id1;
150  u16 status;
151  u8  phy_types;
152};
153
154typedef struct _BufferDesc {
155  u32 link;
156  u32 cmdsts;
157  u32 bufptr;
158} BufferDesc;
159
160struct sis900_private {
161  struct net_device_stats stats;
162  struct pci_dev * pci_dev;
163
164  spinlock_t lock;
165
166  struct mii_phy * mii;
167  struct mii_phy * first_mii; /* record the first mii structure */
168  unsigned int cur_phy;
169  struct mii_if_info mii_info;
170
171  struct timer_list timer; /* Link status detection timer. */
172  u8 autong_complete; /* 1: auto-negotiate complete  */
173
174  u32 msg_enable;
175
176  unsigned int cur_rx, dirty_rx; /* producer/comsumer pointers for Tx/Rx ring */
177  unsigned int cur_tx, dirty_tx;
178
179  /* The saved address of a sent/receive-in-place packet buffer */
180  struct sk_buff *tx_skbuff[NUM_TX_DESC];
181  struct sk_buff *rx_skbuff[NUM_RX_DESC];
182  BufferDesc *tx_ring;
183  BufferDesc *rx_ring;
184
185  dma_addr_t tx_ring_dma;
186  dma_addr_t rx_ring_dma;
187
188  unsigned int tx_full; /* The Tx queue is full. */
189  u8 host_bridge_rev;
190  u8 chipset_rev;
191};
192
193MODULE_AUTHOR("Jim Huang <cmhuang@sis.com.tw>, Ollie Lho <ollie@sis.com.tw>");
194MODULE_DESCRIPTION("SiS 900 PCI Fast Ethernet driver");
195MODULE_LICENSE("GPL");
196
197module_param(multicast_filter_limit, int, 0444);
198module_param(max_interrupt_work, int, 0444);
199module_param(sis900_debug, int, 0444);
200MODULE_PARM_DESC(multicast_filter_limit, "SiS 900/7016 maximum number of filtered multicast addresses");
201MODULE_PARM_DESC(max_interrupt_work, "SiS 900/7016 maximum events handled per interrupt");
202MODULE_PARM_DESC(sis900_debug, "SiS 900/7016 bitmapped debugging message level");
203
204#ifdef CONFIG_NET_POLL_CONTROLLER
205static void sis900_poll(struct net_device *dev);
206#endif
207static int sis900_open(struct net_device *net_dev);
208static int sis900_mii_probe (struct net_device * net_dev);
209static void sis900_init_rxfilter (struct net_device * net_dev);
210static u16 read_eeprom(long ioaddr, int location);
211static int mdio_read(struct net_device *net_dev, int phy_id, int location);
212static void mdio_write(struct net_device *net_dev, int phy_id, int location, int val);
213static void sis900_timer(unsigned long data);
214static void sis900_check_mode (struct net_device *net_dev, struct mii_phy *mii_phy);
215static void sis900_tx_timeout(struct net_device *net_dev);
216static void sis900_init_tx_ring(struct net_device *net_dev);
217static void sis900_init_rx_ring(struct net_device *net_dev);
218static int sis900_start_xmit(struct sk_buff *skb, struct net_device *net_dev);
219static int sis900_rx(struct net_device *net_dev);
220static void sis900_finish_xmit (struct net_device *net_dev);
221static irqreturn_t sis900_interrupt(int irq, void *dev_instance);
222static int sis900_close(struct net_device *net_dev);
223static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd);
224static struct net_device_stats *sis900_get_stats(struct net_device *net_dev);
225static u16 sis900_mcast_bitnr(u8 *addr, u8 revision);
226static void set_rx_mode(struct net_device *net_dev);
227static void sis900_reset(struct net_device *net_dev);
228static void sis630_set_eq(struct net_device *net_dev, u8 revision);
229static int sis900_set_config(struct net_device *dev, struct ifmap *map);
230static u16 sis900_default_phy(struct net_device * net_dev);
231static void sis900_set_capability( struct net_device *net_dev ,struct mii_phy *phy);
232static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr);
233static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr);
234static void sis900_set_mode (long ioaddr, int speed, int duplex);
235static const struct ethtool_ops sis900_ethtool_ops;
236
237/**
238 *  sis900_get_mac_addr - Get MAC address for stand alone SiS900 model
239 *  @pci_dev: the sis900 pci device
240 *  @net_dev: the net device to get address for
241 *
242 *  Older SiS900 and friends, use EEPROM to store MAC address.
243 *  MAC address is read from read_eeprom() into @net_dev->dev_addr.
244 */
245
246static int __devinit sis900_get_mac_addr(struct pci_dev * pci_dev, struct net_device *net_dev)
247{
248  long ioaddr = pci_resource_start(pci_dev, 0);
249  u16 signature;
250  int i;
251
252  /* check to see if we have sane EEPROM */
253  signature = (u16) read_eeprom(ioaddr, EEPROMSignature);
254  if (signature == 0xffff || signature == 0x0000) {
255    printk (KERN_WARNING "%s: Error EERPOM read %x\n",
256      pci_name(pci_dev), signature);
257    return 0;
258  }
259
260  /* get MAC address from EEPROM */
261  for (i = 0; i < 3; i++)
262          ((u16 *)(net_dev->dev_addr))[i] = read_eeprom(ioaddr, i+EEPROMMACAddr);
263
264  return 1;
265}
266
267/**
268 *  sis630e_get_mac_addr - Get MAC address for SiS630E model
269 *  @pci_dev: the sis900 pci device
270 *  @net_dev: the net device to get address for
271 *
272 *  SiS630E model, use APC CMOS RAM to store MAC address.
273 *  APC CMOS RAM is accessed through ISA bridge.
274 *  MAC address is read into @net_dev->dev_addr.
275 */
276
277static int __devinit sis630e_get_mac_addr(struct pci_dev * pci_dev,
278          struct net_device *net_dev)
279{
280  struct pci_dev *isa_bridge = NULL;
281  u8 reg;
282  int i;
283
284  isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0008, isa_bridge);
285  if (!isa_bridge)
286    isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0018, isa_bridge);
287  if (!isa_bridge) {
288    printk(KERN_WARNING "%s: Can not find ISA bridge\n",
289           pci_name(pci_dev));
290    return 0;
291  }
292  pci_read_config_byte(isa_bridge, 0x48, &reg);
293  pci_write_config_byte(isa_bridge, 0x48, reg | 0x40);
294
295  for (i = 0; i < 6; i++) {
296    outb(0x09 + i, 0x70);
297    ((u8 *)(net_dev->dev_addr))[i] = inb(0x71);
298  }
299  pci_write_config_byte(isa_bridge, 0x48, reg & ~0x40);
300  pci_dev_put(isa_bridge);
301
302  return 1;
303}
304
305
306/**
307 *  sis635_get_mac_addr - Get MAC address for SIS635 model
308 *  @pci_dev: the sis900 pci device
309 *  @net_dev: the net device to get address for
310 *
311 *  SiS635 model, set MAC Reload Bit to load Mac address from APC
312 *  to rfdr. rfdr is accessed through rfcr. MAC address is read into
313 *  @net_dev->dev_addr.
314 */
315
316static int __devinit sis635_get_mac_addr(struct pci_dev * pci_dev,
317          struct net_device *net_dev)
318{
319  long ioaddr = net_dev->base_addr;
320  u32 rfcrSave;
321  u32 i;
322
323  rfcrSave = inl(rfcr + ioaddr);
324
325  outl(rfcrSave | RELOAD, ioaddr + cr);
326  outl(0, ioaddr + cr);
327
328  /* disable packet filtering before setting filter */
329  outl(rfcrSave & ~RFEN, rfcr + ioaddr);
330
331  /* load MAC addr to filter data register */
332  for (i = 0 ; i < 3 ; i++) {
333    outl((i << RFADDR_shift), ioaddr + rfcr);
334    *( ((u16 *)net_dev->dev_addr) + i) = inw(ioaddr + rfdr);
335  }
336
337  /* enable packet filtering */
338  outl(rfcrSave | RFEN, rfcr + ioaddr);
339
340  return 1;
341}
342
343/**
344 *  sis96x_get_mac_addr - Get MAC address for SiS962 or SiS963 model
345 *  @pci_dev: the sis900 pci device
346 *  @net_dev: the net device to get address for
347 *
348 *  SiS962 or SiS963 model, use EEPROM to store MAC address. And EEPROM
349 *  is shared by
350 *  LAN and 1394. When access EEPROM, send EEREQ signal to hardware first
351 *  and wait for EEGNT. If EEGNT is ON, EEPROM is permitted to be access
352 *  by LAN, otherwise is not. After MAC address is read from EEPROM, send
353 *  EEDONE signal to refuse EEPROM access by LAN.
354 *  The EEPROM map of SiS962 or SiS963 is different to SiS900.
355 *  The signature field in SiS962 or SiS963 spec is meaningless.
356 *  MAC address is read into @net_dev->dev_addr.
357 */
358
359static int __devinit sis96x_get_mac_addr(struct pci_dev * pci_dev,
360          struct net_device *net_dev)
361{
362  long ioaddr = net_dev->base_addr;
363  long ee_addr = ioaddr + mear;
364  u32 waittime = 0;
365  int i;
366
367  outl(EEREQ, ee_addr);
368  while(waittime < 2000) {
369    if(inl(ee_addr) & EEGNT) {
370
371      /* get MAC address from EEPROM */
372      for (i = 0; i < 3; i++)
373              ((u16 *)(net_dev->dev_addr))[i] = read_eeprom(ioaddr, i+EEPROMMACAddr);
374
375      outl(EEDONE, ee_addr);
376      return 1;
377    } else {
378      udelay(1);
379      waittime ++;
380    }
381  }
382  outl(EEDONE, ee_addr);
383  return 0;
384}
385
386/**
387 *  sis900_probe - Probe for sis900 device
388 *  @pci_dev: the sis900 pci device
389 *  @pci_id: the pci device ID
390 *
391 *  Check and probe sis900 net device for @pci_dev.
392 *  Get mac address according to the chip revision,
393 *  and assign SiS900-specific entries in the device structure.
394 *  ie: sis900_open(), sis900_start_xmit(), sis900_close(), etc.
395 */
396
397static int __devinit sis900_probe(struct pci_dev *pci_dev,
398        const struct pci_device_id *pci_id)
399{
400  struct sis900_private *sis_priv;
401  struct net_device *net_dev;
402  struct pci_dev *dev;
403  dma_addr_t ring_dma;
404  void *ring_space;
405  long ioaddr;
406  int i, ret;
407  const char *card_name = card_names[pci_id->driver_data];
408  const char *dev_name = pci_name(pci_dev);
409
410/* when built into the kernel, we only print version if device is found */
411#ifndef MODULE
412  static int printed_version;
413  if (!printed_version++)
414    printk(version);
415#endif
416
417  /* setup various bits in PCI command register */
418  ret = pci_enable_device(pci_dev);
419  if(ret) return ret;
420
421  i = pci_set_dma_mask(pci_dev, DMA_32BIT_MASK);
422  if(i){
423    printk(KERN_ERR "sis900.c: architecture does not support"
424      "32bit PCI busmaster DMA\n");
425    return i;
426  }
427
428  pci_set_master(pci_dev);
429
430  net_dev = alloc_etherdev(sizeof(struct sis900_private));
431  if (!net_dev)
432    return -ENOMEM;
433  SET_MODULE_OWNER(net_dev);
434  SET_NETDEV_DEV(net_dev, &pci_dev->dev);
435
436  /* We do a request_region() to register /proc/ioports info. */
437  ioaddr = pci_resource_start(pci_dev, 0);
438  ret = pci_request_regions(pci_dev, "sis900");
439  if (ret)
440    goto err_out;
441
442  sis_priv = net_dev->priv;
443  net_dev->base_addr = ioaddr;
444  net_dev->irq = pci_dev->irq;
445  sis_priv->pci_dev = pci_dev;
446  spin_lock_init(&sis_priv->lock);
447
448  pci_set_drvdata(pci_dev, net_dev);
449
450  ring_space = pci_alloc_consistent(pci_dev, TX_TOTAL_SIZE, &ring_dma);
451  if (!ring_space) {
452    ret = -ENOMEM;
453    goto err_out_cleardev;
454  }
455  sis_priv->tx_ring = (BufferDesc *)ring_space;
456  sis_priv->tx_ring_dma = ring_dma;
457
458  ring_space = pci_alloc_consistent(pci_dev, RX_TOTAL_SIZE, &ring_dma);
459  if (!ring_space) {
460    ret = -ENOMEM;
461    goto err_unmap_tx;
462  }
463  sis_priv->rx_ring = (BufferDesc *)ring_space;
464  sis_priv->rx_ring_dma = ring_dma;
465
466  /* The SiS900-specific entries in the device structure. */
467  net_dev->open = &sis900_open;
468  net_dev->hard_start_xmit = &sis900_start_xmit;
469  net_dev->stop = &sis900_close;
470  net_dev->get_stats = &sis900_get_stats;
471  net_dev->set_config = &sis900_set_config;
472  net_dev->set_multicast_list = &set_rx_mode;
473  net_dev->do_ioctl = &mii_ioctl;
474  net_dev->tx_timeout = sis900_tx_timeout;
475  net_dev->watchdog_timeo = TX_TIMEOUT;
476  net_dev->ethtool_ops = &sis900_ethtool_ops;
477
478#ifdef CONFIG_NET_POLL_CONTROLLER
479        net_dev->poll_controller = &sis900_poll;
480#endif
481
482  if (sis900_debug > 0)
483    sis_priv->msg_enable = sis900_debug;
484  else
485    sis_priv->msg_enable = SIS900_DEF_MSG;
486
487  sis_priv->mii_info.dev = net_dev;
488  sis_priv->mii_info.mdio_read = mdio_read;
489  sis_priv->mii_info.mdio_write = mdio_write;
490  sis_priv->mii_info.phy_id_mask = 0x1f;
491  sis_priv->mii_info.reg_num_mask = 0x1f;
492
493  /* Get Mac address according to the chip revision */
494  pci_read_config_byte(pci_dev, PCI_CLASS_REVISION, &(sis_priv->chipset_rev));
495  if(netif_msg_probe(sis_priv))
496    printk(KERN_DEBUG "%s: detected revision %2.2x, "
497        "trying to get MAC address...\n",
498        dev_name, sis_priv->chipset_rev);
499
500  ret = 0;
501  if (sis_priv->chipset_rev == SIS630E_900_REV)
502    ret = sis630e_get_mac_addr(pci_dev, net_dev);
503  else if ((sis_priv->chipset_rev > 0x81) && (sis_priv->chipset_rev <= 0x90) )
504    ret = sis635_get_mac_addr(pci_dev, net_dev);
505  else if (sis_priv->chipset_rev == SIS96x_900_REV)
506    ret = sis96x_get_mac_addr(pci_dev, net_dev);
507  else
508    ret = sis900_get_mac_addr(pci_dev, net_dev);
509
510  if (ret == 0) {
511    printk(KERN_WARNING "%s: Cannot read MAC address.\n", dev_name);
512    ret = -ENODEV;
513    goto err_unmap_rx;
514  }
515
516  /* 630ET : set the mii access mode as software-mode */
517  if (sis_priv->chipset_rev == SIS630ET_900_REV)
518    outl(ACCESSMODE | inl(ioaddr + cr), ioaddr + cr);
519
520  /* probe for mii transceiver */
521  if (sis900_mii_probe(net_dev) == 0) {
522    printk(KERN_WARNING "%s: Error probing MII device.\n",
523           dev_name);
524    ret = -ENODEV;
525    goto err_unmap_rx;
526  }
527
528  /* save our host bridge revision */
529  dev = pci_get_device(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_630, NULL);
530  if (dev) {
531    pci_read_config_byte(dev, PCI_CLASS_REVISION, &sis_priv->host_bridge_rev);
532    pci_dev_put(dev);
533  }
534
535  ret = register_netdev(net_dev);
536  if (ret)
537    goto err_unmap_rx;
538
539  /* print some information about our NIC */
540  printk(KERN_INFO "%s: %s at %#lx, IRQ %d, ", net_dev->name,
541         card_name, ioaddr, net_dev->irq);
542  for (i = 0; i < 5; i++)
543    printk("%2.2x:", (u8)net_dev->dev_addr[i]);
544  printk("%2.2x.\n", net_dev->dev_addr[i]);
545
546  /* Detect Wake on Lan support */
547  ret = (inl(net_dev->base_addr + CFGPMC) & PMESP) >> 27;
548  if (netif_msg_probe(sis_priv) && (ret & PME_D3C) == 0)
549    printk(KERN_INFO "%s: Wake on LAN only available from suspend to RAM.", net_dev->name);
550
551  return 0;
552
553 err_unmap_rx:
554  pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
555    sis_priv->rx_ring_dma);
556 err_unmap_tx:
557  pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
558    sis_priv->tx_ring_dma);
559 err_out_cleardev:
560  pci_set_drvdata(pci_dev, NULL);
561  pci_release_regions(pci_dev);
562 err_out:
563  free_netdev(net_dev);
564  return ret;
565}
566
567/**
568 *  sis900_mii_probe - Probe MII PHY for sis900
569 *  @net_dev: the net device to probe for
570 *
571 *  Search for total of 32 possible mii phy addresses.
572 *  Identify and set current phy if found one,
573 *  return error if it failed to found.
574 */
575
576static int __init sis900_mii_probe(struct net_device * net_dev)
577{
578  struct sis900_private * sis_priv = net_dev->priv;
579  const char *dev_name = pci_name(sis_priv->pci_dev);
580  u16 poll_bit = MII_STAT_LINK, status = 0;
581  unsigned long timeout = jiffies + 5 * HZ;
582  int phy_addr;
583
584  sis_priv->mii = NULL;
585
586  /* search for total of 32 possible mii phy addresses */
587  for (phy_addr = 0; phy_addr < 32; phy_addr++) {
588    struct mii_phy * mii_phy = NULL;
589    u16 mii_status;
590    int i;
591
592    mii_phy = NULL;
593    for(i = 0; i < 2; i++)
594      mii_status = mdio_read(net_dev, phy_addr, MII_STATUS);
595
596    if (mii_status == 0xffff || mii_status == 0x0000) {
597      if (netif_msg_probe(sis_priv))
598        printk(KERN_DEBUG "%s: MII at address %d"
599            " not accessible\n",
600            dev_name, phy_addr);
601      continue;
602    }
603
604    if ((mii_phy = kmalloc(sizeof(struct mii_phy), GFP_KERNEL)) == NULL) {
605      printk(KERN_WARNING "Cannot allocate mem for struct mii_phy\n");
606      mii_phy = sis_priv->first_mii;
607      while (mii_phy) {
608        struct mii_phy *phy;
609        phy = mii_phy;
610        mii_phy = mii_phy->next;
611        kfree(phy);
612      }
613      return 0;
614    }
615
616    mii_phy->phy_id0 = mdio_read(net_dev, phy_addr, MII_PHY_ID0);
617    mii_phy->phy_id1 = mdio_read(net_dev, phy_addr, MII_PHY_ID1);
618    mii_phy->phy_addr = phy_addr;
619    mii_phy->status = mii_status;
620    mii_phy->next = sis_priv->mii;
621    sis_priv->mii = mii_phy;
622    sis_priv->first_mii = mii_phy;
623
624    for (i = 0; mii_chip_table[i].phy_id1; i++)
625      if ((mii_phy->phy_id0 == mii_chip_table[i].phy_id0 ) &&
626          ((mii_phy->phy_id1 & 0xFFF0) == mii_chip_table[i].phy_id1)){
627        mii_phy->phy_types = mii_chip_table[i].phy_types;
628        if (mii_chip_table[i].phy_types == MIX)
629          mii_phy->phy_types =
630              (mii_status & (MII_STAT_CAN_TX_FDX | MII_STAT_CAN_TX)) ? LAN : HOME;
631        printk(KERN_INFO "%s: %s transceiver found "
632              "at address %d.\n",
633              dev_name,
634              mii_chip_table[i].name,
635              phy_addr);
636        break;
637      }
638
639    if( !mii_chip_table[i].phy_id1 ) {
640      printk(KERN_INFO "%s: Unknown PHY transceiver found at address %d.\n",
641             dev_name, phy_addr);
642      mii_phy->phy_types = UNKNOWN;
643    }
644  }
645
646  if (sis_priv->mii == NULL) {
647    printk(KERN_INFO "%s: No MII transceivers found!\n", dev_name);
648    return 0;
649  }
650
651  /* select default PHY for mac */
652  sis_priv->mii = NULL;
653  sis900_default_phy( net_dev );
654
655  /* Reset phy if default phy is internal sis900 */
656        if ((sis_priv->mii->phy_id0 == 0x001D) &&
657      ((sis_priv->mii->phy_id1&0xFFF0) == 0x8000))
658          status = sis900_reset_phy(net_dev, sis_priv->cur_phy);
659
660        /* workaround for ICS1893 PHY */
661        if ((sis_priv->mii->phy_id0 == 0x0015) &&
662            ((sis_priv->mii->phy_id1&0xFFF0) == 0xF440))
663              mdio_write(net_dev, sis_priv->cur_phy, 0x0018, 0xD200);
664
665  if(status & MII_STAT_LINK){
666    while (poll_bit) {
667      yield();
668
669      poll_bit ^= (mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS) & poll_bit);
670      if (time_after_eq(jiffies, timeout)) {
671        printk(KERN_WARNING "%s: reset phy and link down now\n",
672               dev_name);
673        return -ETIME;
674      }
675    }
676  }
677
678  if (sis_priv->chipset_rev == SIS630E_900_REV) {
679    /* SiS 630E has some bugs on default value of PHY registers */
680    mdio_write(net_dev, sis_priv->cur_phy, MII_ANADV, 0x05e1);
681    mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG1, 0x22);
682    mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG2, 0xff00);
683    mdio_write(net_dev, sis_priv->cur_phy, MII_MASK, 0xffc0);
684    //mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, 0x1000);
685  }
686
687  if (sis_priv->mii->status & MII_STAT_LINK)
688    netif_carrier_on(net_dev);
689  else
690    netif_carrier_off(net_dev);
691
692  return 1;
693}
694
695/**
696 *  sis900_default_phy - Select default PHY for sis900 mac.
697 *  @net_dev: the net device to probe for
698 *
699 *  Select first detected PHY with link as default.
700 *  If no one is link on, select PHY whose types is HOME as default.
701 *  If HOME doesn't exist, select LAN.
702 */
703
704static u16 sis900_default_phy(struct net_device * net_dev)
705{
706  struct sis900_private * sis_priv = net_dev->priv;
707  struct mii_phy *phy = NULL, *phy_home = NULL,
708    *default_phy = NULL, *phy_lan = NULL;
709  u16 status;
710
711        for (phy=sis_priv->first_mii; phy; phy=phy->next) {
712    status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
713    status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
714
715    /* Link ON & Not select default PHY & not ghost PHY */
716     if ((status & MII_STAT_LINK) && !default_phy &&
717          (phy->phy_types != UNKNOWN))
718      default_phy = phy;
719     else {
720      status = mdio_read(net_dev, phy->phy_addr, MII_CONTROL);
721      mdio_write(net_dev, phy->phy_addr, MII_CONTROL,
722        status | MII_CNTL_AUTO | MII_CNTL_ISOLATE);
723      if (phy->phy_types == HOME)
724        phy_home = phy;
725      else if(phy->phy_types == LAN)
726        phy_lan = phy;
727     }
728  }
729
730  if (!default_phy && phy_home)
731    default_phy = phy_home;
732  else if (!default_phy && phy_lan)
733    default_phy = phy_lan;
734  else if (!default_phy)
735    default_phy = sis_priv->first_mii;
736
737  if (sis_priv->mii != default_phy) {
738    sis_priv->mii = default_phy;
739    sis_priv->cur_phy = default_phy->phy_addr;
740    printk(KERN_INFO "%s: Using transceiver found at address %d as default\n",
741           pci_name(sis_priv->pci_dev), sis_priv->cur_phy);
742  }
743
744  sis_priv->mii_info.phy_id = sis_priv->cur_phy;
745
746  status = mdio_read(net_dev, sis_priv->cur_phy, MII_CONTROL);
747  status &= (~MII_CNTL_ISOLATE);
748
749  mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, status);
750  status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
751  status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
752
753  return status;
754}
755
756
757/**
758 *  sis900_set_capability - set the media capability of network adapter.
759 *  @net_dev : the net device to probe for
760 *  @phy : default PHY
761 *
762 *  Set the media capability of network adapter according to
763 *  mii status register. It's necessary before auto-negotiate.
764 */
765
766static void sis900_set_capability(struct net_device *net_dev, struct mii_phy *phy)
767{
768  u16 cap;
769  u16 status;
770
771  status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
772  status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
773
774  cap = MII_NWAY_CSMA_CD |
775    ((phy->status & MII_STAT_CAN_TX_FDX)? MII_NWAY_TX_FDX:0) |
776    ((phy->status & MII_STAT_CAN_TX)    ? MII_NWAY_TX:0) |
777    ((phy->status & MII_STAT_CAN_T_FDX) ? MII_NWAY_T_FDX:0)|
778    ((phy->status & MII_STAT_CAN_T)     ? MII_NWAY_T:0);
779
780  mdio_write(net_dev, phy->phy_addr, MII_ANADV, cap);
781}
782
783
784/* Delay between EEPROM clock transitions. */
785#define eeprom_delay()  inl(ee_addr)
786
787/**
788 *  read_eeprom - Read Serial EEPROM
789 *  @ioaddr: base i/o address
790 *  @location: the EEPROM location to read
791 *
792 *  Read Serial EEPROM through EEPROM Access Register.
793 *  Note that location is in word (16 bits) unit
794 */
795
796static u16 __devinit read_eeprom(long ioaddr, int location)
797{
798  int i;
799  u16 retval = 0;
800  long ee_addr = ioaddr + mear;
801  u32 read_cmd = location | EEread;
802
803  outl(0, ee_addr);
804  eeprom_delay();
805  outl(EECS, ee_addr);
806  eeprom_delay();
807
808  /* Shift the read command (9) bits out. */
809  for (i = 8; i >= 0; i--) {
810    u32 dataval = (read_cmd & (1 << i)) ? EEDI | EECS : EECS;
811    outl(dataval, ee_addr);
812    eeprom_delay();
813    outl(dataval | EECLK, ee_addr);
814    eeprom_delay();
815  }
816  outl(EECS, ee_addr);
817  eeprom_delay();
818
819  /* read the 16-bits data in */
820  for (i = 16; i > 0; i--) {
821    outl(EECS, ee_addr);
822    eeprom_delay();
823    outl(EECS | EECLK, ee_addr);
824    eeprom_delay();
825    retval = (retval << 1) | ((inl(ee_addr) & EEDO) ? 1 : 0);
826    eeprom_delay();
827  }
828
829  /* Terminate the EEPROM access. */
830  outl(0, ee_addr);
831  eeprom_delay();
832
833  return (retval);
834}
835
836/* Read and write the MII management registers using software-generated
837   serial MDIO protocol. Note that the command bits and data bits are
838   send out separately */
839#define mdio_delay()    inl(mdio_addr)
840
841static void mdio_idle(long mdio_addr)
842{
843  outl(MDIO | MDDIR, mdio_addr);
844  mdio_delay();
845  outl(MDIO | MDDIR | MDC, mdio_addr);
846}
847
848/* Syncronize the MII management interface by shifting 32 one bits out. */
849static void mdio_reset(long mdio_addr)
850{
851  int i;
852
853  for (i = 31; i >= 0; i--) {
854    outl(MDDIR | MDIO, mdio_addr);
855    mdio_delay();
856    outl(MDDIR | MDIO | MDC, mdio_addr);
857    mdio_delay();
858  }
859  return;
860}
861
862/**
863 *  mdio_read - read MII PHY register
864 *  @net_dev: the net device to read
865 *  @phy_id: the phy address to read
866 *  @location: the phy regiester id to read
867 *
868 *  Read MII registers through MDIO and MDC
869 *  using MDIO management frame structure and protocol(defined by ISO/IEC).
870 *  Please see SiS7014 or ICS spec
871 */
872
873static int mdio_read(struct net_device *net_dev, int phy_id, int location)
874{
875  long mdio_addr = net_dev->base_addr + mear;
876  int mii_cmd = MIIread|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
877  u16 retval = 0;
878  int i;
879
880  mdio_reset(mdio_addr);
881  mdio_idle(mdio_addr);
882
883  for (i = 15; i >= 0; i--) {
884    int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
885    outl(dataval, mdio_addr);
886    mdio_delay();
887    outl(dataval | MDC, mdio_addr);
888    mdio_delay();
889  }
890
891  /* Read the 16 data bits. */
892  for (i = 16; i > 0; i--) {
893    outl(0, mdio_addr);
894    mdio_delay();
895    retval = (retval << 1) | ((inl(mdio_addr) & MDIO) ? 1 : 0);
896    outl(MDC, mdio_addr);
897    mdio_delay();
898  }
899  outl(0x00, mdio_addr);
900
901  return retval;
902}
903
904/**
905 *  mdio_write - write MII PHY register
906 *  @net_dev: the net device to write
907 *  @phy_id: the phy address to write
908 *  @location: the phy regiester id to write
909 *  @value: the register value to write with
910 *
911 *  Write MII registers with @value through MDIO and MDC
912 *  using MDIO management frame structure and protocol(defined by ISO/IEC)
913 *  please see SiS7014 or ICS spec
914 */
915
916static void mdio_write(struct net_device *net_dev, int phy_id, int location,
917      int value)
918{
919  long mdio_addr = net_dev->base_addr + mear;
920  int mii_cmd = MIIwrite|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
921  int i;
922
923  mdio_reset(mdio_addr);
924  mdio_idle(mdio_addr);
925
926  /* Shift the command bits out. */
927  for (i = 15; i >= 0; i--) {
928    int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
929    outb(dataval, mdio_addr);
930    mdio_delay();
931    outb(dataval | MDC, mdio_addr);
932    mdio_delay();
933  }
934  mdio_delay();
935
936  /* Shift the value bits out. */
937  for (i = 15; i >= 0; i--) {
938    int dataval = (value & (1 << i)) ? MDDIR | MDIO : MDDIR;
939    outl(dataval, mdio_addr);
940    mdio_delay();
941    outl(dataval | MDC, mdio_addr);
942    mdio_delay();
943  }
944  mdio_delay();
945
946  /* Clear out extra bits. */
947  for (i = 2; i > 0; i--) {
948    outb(0, mdio_addr);
949    mdio_delay();
950    outb(MDC, mdio_addr);
951    mdio_delay();
952  }
953  outl(0x00, mdio_addr);
954
955  return;
956}
957
958
959/**
960 *  sis900_reset_phy - reset sis900 mii phy.
961 *  @net_dev: the net device to write
962 *  @phy_addr: default phy address
963 *
964 *  Some specific phy can't work properly without reset.
965 *  This function will be called during initialization and
966 *  link status change from ON to DOWN.
967 */
968
969static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr)
970{
971  int i = 0;
972  u16 status;
973
974  while (i++ < 2)
975    status = mdio_read(net_dev, phy_addr, MII_STATUS);
976
977  mdio_write( net_dev, phy_addr, MII_CONTROL, MII_CNTL_RESET );
978
979  return status;
980}
981
982#ifdef CONFIG_NET_POLL_CONTROLLER
983/*
984 * Polling 'interrupt' - used by things like netconsole to send skbs
985 * without having to re-enable interrupts. It's not called while
986 * the interrupt routine is executing.
987*/
988static void sis900_poll(struct net_device *dev)
989{
990  disable_irq(dev->irq);
991  sis900_interrupt(dev->irq, dev);
992  enable_irq(dev->irq);
993}
994#endif
995
996/**
997 *  sis900_open - open sis900 device
998 *  @net_dev: the net device to open
999 *
1000 *  Do some initialization and start net interface.
1001 *  enable interrupts and set sis900 timer.
1002 */
1003
1004static int
1005sis900_open(struct net_device *net_dev)
1006{
1007  struct sis900_private *sis_priv = net_dev->priv;
1008  long ioaddr = net_dev->base_addr;
1009  int ret;
1010
1011  /* Soft reset the chip. */
1012  sis900_reset(net_dev);
1013
1014  /* Equalizer workaround Rule */
1015  sis630_set_eq(net_dev, sis_priv->chipset_rev);
1016
1017  ret = request_irq(net_dev->irq, &sis900_interrupt, IRQF_SHARED,
1018            net_dev->name, net_dev);
1019  if (ret)
1020    return ret;
1021
1022  sis900_init_rxfilter(net_dev);
1023
1024  sis900_init_tx_ring(net_dev);
1025  sis900_init_rx_ring(net_dev);
1026
1027  set_rx_mode(net_dev);
1028
1029  netif_start_queue(net_dev);
1030
1031  /* Workaround for EDB */
1032  sis900_set_mode(ioaddr, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
1033
1034  /* Enable all known interrupts by setting the interrupt mask. */
1035  outl((RxSOVR|RxORN|RxERR|RxOK|TxURN|TxERR|TxIDLE), ioaddr + imr);
1036  outl(RxENA | inl(ioaddr + cr), ioaddr + cr);
1037  outl(IE, ioaddr + ier);
1038
1039  sis900_check_mode(net_dev, sis_priv->mii);
1040
1041  /* Set the timer to switch to check for link beat and perhaps switch
1042     to an alternate media type. */
1043  init_timer(&sis_priv->timer);
1044  sis_priv->timer.expires = jiffies + HZ;
1045  sis_priv->timer.data = (unsigned long)net_dev;
1046  sis_priv->timer.function = &sis900_timer;
1047  add_timer(&sis_priv->timer);
1048
1049  return 0;
1050}
1051
1052/**
1053 *  sis900_init_rxfilter - Initialize the Rx filter
1054 *  @net_dev: the net device to initialize for
1055 *
1056 *  Set receive filter address to our MAC address
1057 *  and enable packet filtering.
1058 */
1059
1060static void
1061sis900_init_rxfilter (struct net_device * net_dev)
1062{
1063  struct sis900_private *sis_priv = net_dev->priv;
1064  long ioaddr = net_dev->base_addr;
1065  u32 rfcrSave;
1066  u32 i;
1067
1068  rfcrSave = inl(rfcr + ioaddr);
1069
1070  /* disable packet filtering before setting filter */
1071  outl(rfcrSave & ~RFEN, rfcr + ioaddr);
1072
1073  /* load MAC addr to filter data register */
1074  for (i = 0 ; i < 3 ; i++) {
1075    u32 w;
1076
1077    w = (u32) *((u16 *)(net_dev->dev_addr)+i);
1078    outl((i << RFADDR_shift), ioaddr + rfcr);
1079    outl(w, ioaddr + rfdr);
1080
1081    if (netif_msg_hw(sis_priv)) {
1082      printk(KERN_DEBUG "%s: Receive Filter Addrss[%d]=%x\n",
1083             net_dev->name, i, inl(ioaddr + rfdr));
1084    }
1085  }
1086
1087  /* enable packet filtering */
1088  outl(rfcrSave | RFEN, rfcr + ioaddr);
1089}
1090
1091/**
1092 *  sis900_init_tx_ring - Initialize the Tx descriptor ring
1093 *  @net_dev: the net device to initialize for
1094 *
1095 *  Initialize the Tx descriptor ring,
1096 */
1097
1098static void
1099sis900_init_tx_ring(struct net_device *net_dev)
1100{
1101  struct sis900_private *sis_priv = net_dev->priv;
1102  long ioaddr = net_dev->base_addr;
1103  int i;
1104
1105  sis_priv->tx_full = 0;
1106  sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1107
1108  for (i = 0; i < NUM_TX_DESC; i++) {
1109    sis_priv->tx_skbuff[i] = NULL;
1110
1111    sis_priv->tx_ring[i].link = sis_priv->tx_ring_dma +
1112      ((i+1)%NUM_TX_DESC)*sizeof(BufferDesc);
1113    sis_priv->tx_ring[i].cmdsts = 0;
1114    sis_priv->tx_ring[i].bufptr = 0;
1115  }
1116
1117  /* load Transmit Descriptor Register */
1118  outl(sis_priv->tx_ring_dma, ioaddr + txdp);
1119  if (netif_msg_hw(sis_priv))
1120    printk(KERN_DEBUG "%s: TX descriptor register loaded with: %8.8x\n",
1121           net_dev->name, inl(ioaddr + txdp));
1122}
1123
1124/**
1125 *  sis900_init_rx_ring - Initialize the Rx descriptor ring
1126 *  @net_dev: the net device to initialize for
1127 *
1128 *  Initialize the Rx descriptor ring,
1129 *  and pre-allocate recevie buffers (socket buffer)
1130 */
1131
1132static void
1133sis900_init_rx_ring(struct net_device *net_dev)
1134{
1135  struct sis900_private *sis_priv = net_dev->priv;
1136  long ioaddr = net_dev->base_addr;
1137  int i;
1138
1139  sis_priv->cur_rx = 0;
1140  sis_priv->dirty_rx = 0;
1141
1142  /* init RX descriptor */
1143  for (i = 0; i < NUM_RX_DESC; i++) {
1144    sis_priv->rx_skbuff[i] = NULL;
1145
1146    sis_priv->rx_ring[i].link = sis_priv->rx_ring_dma +
1147      ((i+1)%NUM_RX_DESC)*sizeof(BufferDesc);
1148    sis_priv->rx_ring[i].cmdsts = 0;
1149    sis_priv->rx_ring[i].bufptr = 0;
1150  }
1151
1152  /* allocate sock buffers */
1153  for (i = 0; i < NUM_RX_DESC; i++) {
1154    struct sk_buff *skb;
1155
1156    if ((skb = dev_alloc_skb(RX_BUF_SIZE)) == NULL) {
1157      /* not enough memory for skbuff, this makes a "hole"
1158         on the buffer ring, it is not clear how the
1159         hardware will react to this kind of degenerated
1160         buffer */
1161      break;
1162    }
1163    skb->dev = net_dev;
1164    sis_priv->rx_skbuff[i] = skb;
1165    sis_priv->rx_ring[i].cmdsts = RX_BUF_SIZE;
1166                sis_priv->rx_ring[i].bufptr = pci_map_single(sis_priv->pci_dev,
1167                        skb->data, RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1168  }
1169  sis_priv->dirty_rx = (unsigned int) (i - NUM_RX_DESC);
1170
1171  /* load Receive Descriptor Register */
1172  outl(sis_priv->rx_ring_dma, ioaddr + rxdp);
1173  if (netif_msg_hw(sis_priv))
1174    printk(KERN_DEBUG "%s: RX descriptor register loaded with: %8.8x\n",
1175           net_dev->name, inl(ioaddr + rxdp));
1176}
1177
1178/**
1179 *  sis630_set_eq - set phy equalizer value for 630 LAN
1180 *  @net_dev: the net device to set equalizer value
1181 *  @revision: 630 LAN revision number
1182 *
1183 *  630E equalizer workaround rule(Cyrus Huang 08/15)
1184 *  PHY register 14h(Test)
1185 *  Bit 14: 0 -- Automatically dectect (default)
1186 *    1 -- Manually set Equalizer filter
1187 *  Bit 13: 0 -- (Default)
1188 *    1 -- Speed up convergence of equalizer setting
1189 *  Bit 9 : 0 -- (Default)
1190 *    1 -- Disable Baseline Wander
1191 *  Bit 3~7   -- Equalizer filter setting
1192 *  Link ON: Set Bit 9, 13 to 1, Bit 14 to 0
1193 *  Then calculate equalizer value
1194 *  Then set equalizer value, and set Bit 14 to 1, Bit 9 to 0
1195 *  Link Off:Set Bit 13 to 1, Bit 14 to 0
1196 *  Calculate Equalizer value:
1197 *  When Link is ON and Bit 14 is 0, SIS900PHY will auto-dectect proper equalizer value.
1198 *  When the equalizer is stable, this value is not a fixed value. It will be within
1199 *  a small range(eg. 7~9). Then we get a minimum and a maximum value(eg. min=7, max=9)
1200 *  0 <= max <= 4  --> set equalizer to max
1201 *  5 <= max <= 14 --> set equalizer to max+1 or set equalizer to max+2 if max == min
1202 *  max >= 15      --> set equalizer to max+5 or set equalizer to max+6 if max == min
1203 */
1204
1205static void sis630_set_eq(struct net_device *net_dev, u8 revision)
1206{
1207  struct sis900_private *sis_priv = net_dev->priv;
1208  u16 reg14h, eq_value=0, max_value=0, min_value=0;
1209  int i, maxcount=10;
1210
1211  if ( !(revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1212         revision == SIS630A_900_REV || revision ==  SIS630ET_900_REV) )
1213    return;
1214
1215  if (netif_carrier_ok(net_dev)) {
1216    reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1217    mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1218          (0x2200 | reg14h) & 0xBFFF);
1219    for (i=0; i < maxcount; i++) {
1220      eq_value = (0x00F8 & mdio_read(net_dev,
1221          sis_priv->cur_phy, MII_RESV)) >> 3;
1222      if (i == 0)
1223        max_value=min_value=eq_value;
1224      max_value = (eq_value > max_value) ?
1225            eq_value : max_value;
1226      min_value = (eq_value < min_value) ?
1227            eq_value : min_value;
1228    }
1229    /* 630E rule to determine the equalizer value */
1230    if (revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1231        revision == SIS630ET_900_REV) {
1232      if (max_value < 5)
1233        eq_value = max_value;
1234      else if (max_value >= 5 && max_value < 15)
1235        eq_value = (max_value == min_value) ?
1236            max_value+2 : max_value+1;
1237      else if (max_value >= 15)
1238        eq_value=(max_value == min_value) ?
1239            max_value+6 : max_value+5;
1240    }
1241    /* 630B0&B1 rule to determine the equalizer value */
1242    if (revision == SIS630A_900_REV &&
1243        (sis_priv->host_bridge_rev == SIS630B0 ||
1244         sis_priv->host_bridge_rev == SIS630B1)) {
1245      if (max_value == 0)
1246        eq_value = 3;
1247      else
1248        eq_value = (max_value + min_value + 1)/2;
1249    }
1250    /* write equalizer value and setting */
1251    reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1252    reg14h = (reg14h & 0xFF07) | ((eq_value << 3) & 0x00F8);
1253    reg14h = (reg14h | 0x6000) & 0xFDFF;
1254    mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, reg14h);
1255  } else {
1256    reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1257    if (revision == SIS630A_900_REV &&
1258        (sis_priv->host_bridge_rev == SIS630B0 ||
1259         sis_priv->host_bridge_rev == SIS630B1))
1260      mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1261            (reg14h | 0x2200) & 0xBFFF);
1262    else
1263      mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1264            (reg14h | 0x2000) & 0xBFFF);
1265  }
1266  return;
1267}
1268
1269/**
1270 *  sis900_timer - sis900 timer routine
1271 *  @data: pointer to sis900 net device
1272 *
1273 *  On each timer ticks we check two things,
1274 *  link status (ON/OFF) and link mode (10/100/Full/Half)
1275 */
1276
1277static void sis900_timer(unsigned long data)
1278{
1279  struct net_device *net_dev = (struct net_device *)data;
1280  struct sis900_private *sis_priv = net_dev->priv;
1281  struct mii_phy *mii_phy = sis_priv->mii;
1282  static const int next_tick = 5*HZ;
1283  u16 status;
1284
1285  if (!sis_priv->autong_complete){
1286    int speed, duplex = 0;
1287
1288    sis900_read_mode(net_dev, &speed, &duplex);
1289    if (duplex){
1290      sis900_set_mode(net_dev->base_addr, speed, duplex);
1291      sis630_set_eq(net_dev, sis_priv->chipset_rev);
1292      netif_start_queue(net_dev);
1293    }
1294
1295    sis_priv->timer.expires = jiffies + HZ;
1296    add_timer(&sis_priv->timer);
1297    return;
1298  }
1299
1300  status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1301  status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1302
1303  /* Link OFF -> ON */
1304  if (!netif_carrier_ok(net_dev)) {
1305  LookForLink:
1306    /* Search for new PHY */
1307    status = sis900_default_phy(net_dev);
1308    mii_phy = sis_priv->mii;
1309
1310    if (status & MII_STAT_LINK){
1311      sis900_check_mode(net_dev, mii_phy);
1312      netif_carrier_on(net_dev);
1313    }
1314  } else {
1315  /* Link ON -> OFF */
1316                if (!(status & MII_STAT_LINK)){
1317                  netif_carrier_off(net_dev);
1318      if(netif_msg_link(sis_priv))
1319                    printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1320
1321                  /* Change mode issue */
1322                  if ((mii_phy->phy_id0 == 0x001D) &&
1323          ((mii_phy->phy_id1 & 0xFFF0) == 0x8000))
1324                    sis900_reset_phy(net_dev,  sis_priv->cur_phy);
1325
1326      sis630_set_eq(net_dev, sis_priv->chipset_rev);
1327
1328                  goto LookForLink;
1329                }
1330  }
1331
1332  sis_priv->timer.expires = jiffies + next_tick;
1333  add_timer(&sis_priv->timer);
1334}
1335
1336/**
1337 *  sis900_check_mode - check the media mode for sis900
1338 *  @net_dev: the net device to be checked
1339 *  @mii_phy: the mii phy
1340 *
1341 *  Older driver gets the media mode from mii status output
1342 *  register. Now we set our media capability and auto-negotiate
1343 *  to get the upper bound of speed and duplex between two ends.
1344 *  If the types of mii phy is HOME, it doesn't need to auto-negotiate
1345 *  and autong_complete should be set to 1.
1346 */
1347
1348static void sis900_check_mode(struct net_device *net_dev, struct mii_phy *mii_phy)
1349{
1350  struct sis900_private *sis_priv = net_dev->priv;
1351  long ioaddr = net_dev->base_addr;
1352  int speed, duplex;
1353
1354  if (mii_phy->phy_types == LAN) {
1355    outl(~EXD & inl(ioaddr + cfg), ioaddr + cfg);
1356    sis900_set_capability(net_dev , mii_phy);
1357    sis900_auto_negotiate(net_dev, sis_priv->cur_phy);
1358  } else {
1359    outl(EXD | inl(ioaddr + cfg), ioaddr + cfg);
1360    speed = HW_SPEED_HOME;
1361    duplex = FDX_CAPABLE_HALF_SELECTED;
1362    sis900_set_mode(ioaddr, speed, duplex);
1363    sis_priv->autong_complete = 1;
1364  }
1365}
1366
1367/**
1368 *  sis900_set_mode - Set the media mode of mac register.
1369 *  @ioaddr: the address of the device
1370 *  @speed : the transmit speed to be determined
1371 *  @duplex: the duplex mode to be determined
1372 *
1373 *  Set the media mode of mac register txcfg/rxcfg according to
1374 *  speed and duplex of phy. Bit EDB_MASTER_EN indicates the EDB
1375 *  bus is used instead of PCI bus. When this bit is set 1, the
1376 *  Max DMA Burst Size for TX/RX DMA should be no larger than 16
1377 *  double words.
1378 */
1379
1380static void sis900_set_mode (long ioaddr, int speed, int duplex)
1381{
1382  u32 tx_flags = 0, rx_flags = 0;
1383
1384  if (inl(ioaddr + cfg) & EDB_MASTER_EN) {
1385    tx_flags = TxATP | (DMA_BURST_64 << TxMXDMA_shift) |
1386          (TX_FILL_THRESH << TxFILLT_shift);
1387    rx_flags = DMA_BURST_64 << RxMXDMA_shift;
1388  } else {
1389    tx_flags = TxATP | (DMA_BURST_512 << TxMXDMA_shift) |
1390          (TX_FILL_THRESH << TxFILLT_shift);
1391    rx_flags = DMA_BURST_512 << RxMXDMA_shift;
1392  }
1393
1394  if (speed == HW_SPEED_HOME || speed == HW_SPEED_10_MBPS) {
1395    rx_flags |= (RxDRNT_10 << RxDRNT_shift);
1396    tx_flags |= (TxDRNT_10 << TxDRNT_shift);
1397  } else {
1398    rx_flags |= (RxDRNT_100 << RxDRNT_shift);
1399    tx_flags |= (TxDRNT_100 << TxDRNT_shift);
1400  }
1401
1402  if (duplex == FDX_CAPABLE_FULL_SELECTED) {
1403    tx_flags |= (TxCSI | TxHBI);
1404    rx_flags |= RxATX;
1405  }
1406
1407#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1408  /* Can accept Jumbo packet */
1409  rx_flags |= RxAJAB;
1410#endif
1411
1412  outl (tx_flags, ioaddr + txcfg);
1413  outl (rx_flags, ioaddr + rxcfg);
1414}
1415
1416/**
1417 *  sis900_auto_negotiate - Set the Auto-Negotiation Enable/Reset bit.
1418 *  @net_dev: the net device to read mode for
1419 *  @phy_addr: mii phy address
1420 *
1421 *  If the adapter is link-on, set the auto-negotiate enable/reset bit.
1422 *  autong_complete should be set to 0 when starting auto-negotiation.
1423 *  autong_complete should be set to 1 if we didn't start auto-negotiation.
1424 *  sis900_timer will wait for link on again if autong_complete = 0.
1425 */
1426
1427static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr)
1428{
1429  struct sis900_private *sis_priv = net_dev->priv;
1430  int i = 0;
1431  u32 status;
1432
1433  while (i++ < 2)
1434    status = mdio_read(net_dev, phy_addr, MII_STATUS);
1435
1436  if (!(status & MII_STAT_LINK)){
1437    if(netif_msg_link(sis_priv))
1438      printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1439    sis_priv->autong_complete = 1;
1440    netif_carrier_off(net_dev);
1441    return;
1442  }
1443
1444  /* (Re)start AutoNegotiate */
1445  mdio_write(net_dev, phy_addr, MII_CONTROL,
1446       MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
1447  sis_priv->autong_complete = 0;
1448}
1449
1450
1451/**
1452 *  sis900_read_mode - read media mode for sis900 internal phy
1453 *  @net_dev: the net device to read mode for
1454 *  @speed  : the transmit speed to be determined
1455 *  @duplex : the duplex mode to be determined
1456 *
1457 *  The capability of remote end will be put in mii register autorec
1458 *  after auto-negotiation. Use AND operation to get the upper bound
1459 *  of speed and duplex between two ends.
1460 */
1461
1462static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex)
1463{
1464  struct sis900_private *sis_priv = net_dev->priv;
1465  struct mii_phy *phy = sis_priv->mii;
1466  int phy_addr = sis_priv->cur_phy;
1467  u32 status;
1468  u16 autoadv, autorec;
1469  int i = 0;
1470
1471  while (i++ < 2)
1472    status = mdio_read(net_dev, phy_addr, MII_STATUS);
1473
1474  if (!(status & MII_STAT_LINK))
1475    return;
1476
1477  /* AutoNegotiate completed */
1478  autoadv = mdio_read(net_dev, phy_addr, MII_ANADV);
1479  autorec = mdio_read(net_dev, phy_addr, MII_ANLPAR);
1480  status = autoadv & autorec;
1481
1482  *speed = HW_SPEED_10_MBPS;
1483  *duplex = FDX_CAPABLE_HALF_SELECTED;
1484
1485  if (status & (MII_NWAY_TX | MII_NWAY_TX_FDX))
1486    *speed = HW_SPEED_100_MBPS;
1487  if (status & ( MII_NWAY_TX_FDX | MII_NWAY_T_FDX))
1488    *duplex = FDX_CAPABLE_FULL_SELECTED;
1489
1490  sis_priv->autong_complete = 1;
1491
1492  /* Workaround for Realtek RTL8201 PHY issue */
1493  if ((phy->phy_id0 == 0x0000) && ((phy->phy_id1 & 0xFFF0) == 0x8200)) {
1494    if (mdio_read(net_dev, phy_addr, MII_CONTROL) & MII_CNTL_FDX)
1495      *duplex = FDX_CAPABLE_FULL_SELECTED;
1496    if (mdio_read(net_dev, phy_addr, 0x0019) & 0x01)
1497      *speed = HW_SPEED_100_MBPS;
1498  }
1499
1500  if(netif_msg_link(sis_priv))
1501    printk(KERN_INFO "%s: Media Link On %s %s-duplex \n",
1502                net_dev->name,
1503                *speed == HW_SPEED_100_MBPS ?
1504                  "100mbps" : "10mbps",
1505                *duplex == FDX_CAPABLE_FULL_SELECTED ?
1506                  "full" : "half");
1507}
1508
1509/**
1510 *  sis900_tx_timeout - sis900 transmit timeout routine
1511 *  @net_dev: the net device to transmit
1512 *
1513 *  print transmit timeout status
1514 *  disable interrupts and do some tasks
1515 */
1516
1517static void sis900_tx_timeout(struct net_device *net_dev)
1518{
1519  struct sis900_private *sis_priv = net_dev->priv;
1520  long ioaddr = net_dev->base_addr;
1521  unsigned long flags;
1522  int i;
1523
1524  if(netif_msg_tx_err(sis_priv))
1525    printk(KERN_INFO "%s: Transmit timeout, status %8.8x %8.8x \n",
1526            net_dev->name, inl(ioaddr + cr), inl(ioaddr + isr));
1527
1528  /* Disable interrupts by clearing the interrupt mask. */
1529  outl(0x0000, ioaddr + imr);
1530
1531  /* use spinlock to prevent interrupt handler accessing buffer ring */
1532  spin_lock_irqsave(&sis_priv->lock, flags);
1533
1534  /* discard unsent packets */
1535  sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1536  for (i = 0; i < NUM_TX_DESC; i++) {
1537    struct sk_buff *skb = sis_priv->tx_skbuff[i];
1538
1539    if (skb) {
1540      pci_unmap_single(sis_priv->pci_dev,
1541        sis_priv->tx_ring[i].bufptr, skb->len,
1542        PCI_DMA_TODEVICE);
1543      dev_kfree_skb_irq(skb);
1544      sis_priv->tx_skbuff[i] = NULL;
1545      sis_priv->tx_ring[i].cmdsts = 0;
1546      sis_priv->tx_ring[i].bufptr = 0;
1547      sis_priv->stats.tx_dropped++;
1548    }
1549  }
1550  sis_priv->tx_full = 0;
1551  netif_wake_queue(net_dev);
1552
1553  spin_unlock_irqrestore(&sis_priv->lock, flags);
1554
1555  net_dev->trans_start = jiffies;
1556
1557  /* load Transmit Descriptor Register */
1558  outl(sis_priv->tx_ring_dma, ioaddr + txdp);
1559
1560  /* Enable all known interrupts by setting the interrupt mask. */
1561  outl((RxSOVR|RxORN|RxERR|RxOK|TxURN|TxERR|TxIDLE), ioaddr + imr);
1562  return;
1563}
1564
1565/**
1566 *  sis900_start_xmit - sis900 start transmit routine
1567 *  @skb: socket buffer pointer to put the data being transmitted
1568 *  @net_dev: the net device to transmit with
1569 *
1570 *  Set the transmit buffer descriptor,
1571 *  and write TxENA to enable transmit state machine.
1572 *  tell upper layer if the buffer is full
1573 */
1574
1575static int
1576sis900_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
1577{
1578  struct sis900_private *sis_priv = net_dev->priv;
1579  long ioaddr = net_dev->base_addr;
1580  unsigned int  entry;
1581  unsigned long flags;
1582  unsigned int  index_cur_tx, index_dirty_tx;
1583  unsigned int  count_dirty_tx;
1584
1585  /* Don't transmit data before the complete of auto-negotiation */
1586  if(!sis_priv->autong_complete){
1587    netif_stop_queue(net_dev);
1588    return 1;
1589  }
1590
1591  spin_lock_irqsave(&sis_priv->lock, flags);
1592
1593  /* Calculate the next Tx descriptor entry. */
1594  entry = sis_priv->cur_tx % NUM_TX_DESC;
1595  sis_priv->tx_skbuff[entry] = skb;
1596
1597  /* set the transmit buffer descriptor and enable Transmit State Machine */
1598  sis_priv->tx_ring[entry].bufptr = pci_map_single(sis_priv->pci_dev,
1599    skb->data, skb->len, PCI_DMA_TODEVICE);
1600  sis_priv->tx_ring[entry].cmdsts = (OWN | skb->len);
1601  outl(TxENA | inl(ioaddr + cr), ioaddr + cr);
1602
1603  sis_priv->cur_tx ++;
1604  index_cur_tx = sis_priv->cur_tx;
1605  index_dirty_tx = sis_priv->dirty_tx;
1606
1607  for (count_dirty_tx = 0; index_cur_tx != index_dirty_tx; index_dirty_tx++)
1608    count_dirty_tx ++;
1609
1610  if (index_cur_tx == index_dirty_tx) {
1611    /* dirty_tx is met in the cycle of cur_tx, buffer full */
1612    sis_priv->tx_full = 1;
1613    netif_stop_queue(net_dev);
1614  } else if (count_dirty_tx < NUM_TX_DESC) {
1615    /* Typical path, tell upper layer that more transmission is possible */
1616    netif_start_queue(net_dev);
1617  } else {
1618    /* buffer full, tell upper layer no more transmission */
1619    sis_priv->tx_full = 1;
1620    netif_stop_queue(net_dev);
1621  }
1622
1623  spin_unlock_irqrestore(&sis_priv->lock, flags);
1624
1625  net_dev->trans_start = jiffies;
1626
1627  if (netif_msg_tx_queued(sis_priv))
1628    printk(KERN_DEBUG "%s: Queued Tx packet at %p size %d "
1629           "to slot %d.\n",
1630           net_dev->name, skb->data, (int)skb->len, entry);
1631
1632  return 0;
1633}
1634
1635/**
1636 *  sis900_interrupt - sis900 interrupt handler
1637 *  @irq: the irq number
1638 *  @dev_instance: the client data object
1639 *  @regs: snapshot of processor context
1640 *
1641 *  The interrupt handler does all of the Rx thread work,
1642 *  and cleans up after the Tx thread
1643 */
1644
1645static irqreturn_t sis900_interrupt(int irq, void *dev_instance)
1646{
1647  struct net_device *net_dev = dev_instance;
1648  struct sis900_private *sis_priv = net_dev->priv;
1649  int boguscnt = max_interrupt_work;
1650  long ioaddr = net_dev->base_addr;
1651  u32 status;
1652  unsigned int handled = 0;
1653
1654  spin_lock (&sis_priv->lock);
1655
1656  do {
1657    status = inl(ioaddr + isr);
1658
1659    if ((status & (HIBERR|TxURN|TxERR|TxIDLE|RxORN|RxERR|RxOK)) == 0)
1660      /* nothing intresting happened */
1661      break;
1662    handled = 1;
1663
1664    /* why dow't we break after Tx/Rx case ?? keyword: full-duplex */
1665    if (status & (RxORN | RxERR | RxOK))
1666      /* Rx interrupt */
1667      sis900_rx(net_dev);
1668
1669    if (status & (TxURN | TxERR | TxIDLE))
1670      /* Tx interrupt */
1671      sis900_finish_xmit(net_dev);
1672
1673    /* something strange happened !!! */
1674    if (status & HIBERR) {
1675      if(netif_msg_intr(sis_priv))
1676        printk(KERN_INFO "%s: Abnormal interrupt,"
1677          "status %#8.8x.\n", net_dev->name, status);
1678      break;
1679    }
1680    if (--boguscnt < 0) {
1681      if(netif_msg_intr(sis_priv))
1682        printk(KERN_INFO "%s: Too much work at interrupt, "
1683          "interrupt status = %#8.8x.\n",
1684          net_dev->name, status);
1685      break;
1686    }
1687  } while (1);
1688
1689  if(netif_msg_intr(sis_priv))
1690    printk(KERN_DEBUG "%s: exiting interrupt, "
1691           "interrupt status = 0x%#8.8x.\n",
1692           net_dev->name, inl(ioaddr + isr));
1693
1694  spin_unlock (&sis_priv->lock);
1695  return IRQ_RETVAL(handled);
1696}
1697
1698/**
1699 *  sis900_rx - sis900 receive routine
1700 *  @net_dev: the net device which receives data
1701 *
1702 *  Process receive interrupt events,
1703 *  put buffer to higher layer and refill buffer pool
1704 *  Note: This function is called by interrupt handler,
1705 *  don't do "too much" work here
1706 */
1707
1708static int sis900_rx(struct net_device *net_dev)
1709{
1710  struct sis900_private *sis_priv = net_dev->priv;
1711  long ioaddr = net_dev->base_addr;
1712  unsigned int entry = sis_priv->cur_rx % NUM_RX_DESC;
1713  u32 rx_status = sis_priv->rx_ring[entry].cmdsts;
1714  int rx_work_limit;
1715
1716  if (netif_msg_rx_status(sis_priv))
1717    printk(KERN_DEBUG "sis900_rx, cur_rx:%4.4d, dirty_rx:%4.4d "
1718           "status:0x%8.8x\n",
1719           sis_priv->cur_rx, sis_priv->dirty_rx, rx_status);
1720  rx_work_limit = sis_priv->dirty_rx + NUM_RX_DESC - sis_priv->cur_rx;
1721
1722  while (rx_status & OWN) {
1723    unsigned int rx_size;
1724    unsigned int data_size;
1725
1726    if (--rx_work_limit < 0)
1727      break;
1728
1729    data_size = rx_status & DSIZE;
1730    rx_size = data_size - CRC_SIZE;
1731
1732#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1733    /* ``TOOLONG'' flag means jumbo packet recived. */
1734    if ((rx_status & TOOLONG) && data_size <= MAX_FRAME_SIZE)
1735      rx_status &= (~ ((unsigned int)TOOLONG));
1736#endif
1737
1738    if (rx_status & (ABORT|OVERRUN|TOOLONG|RUNT|RXISERR|CRCERR|FAERR)) {
1739      /* corrupted packet received */
1740      if (netif_msg_rx_err(sis_priv))
1741        printk(KERN_DEBUG "%s: Corrupted packet "
1742               "received, buffer status = 0x%8.8x/%d.\n",
1743               net_dev->name, rx_status, data_size);
1744      sis_priv->stats.rx_errors++;
1745      if (rx_status & OVERRUN)
1746        sis_priv->stats.rx_over_errors++;
1747      if (rx_status & (TOOLONG|RUNT))
1748        sis_priv->stats.rx_length_errors++;
1749      if (rx_status & (RXISERR | FAERR))
1750        sis_priv->stats.rx_frame_errors++;
1751      if (rx_status & CRCERR)
1752        sis_priv->stats.rx_crc_errors++;
1753      /* reset buffer descriptor state */
1754      sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1755    } else {
1756      struct sk_buff * skb;
1757
1758      /* This situation should never happen, but due to
1759         some unknow bugs, it is possible that
1760         we are working on NULL sk_buff :-( */
1761      if (sis_priv->rx_skbuff[entry] == NULL) {
1762        if (netif_msg_rx_err(sis_priv))
1763          printk(KERN_WARNING "%s: NULL pointer "
1764                "encountered in Rx ring\n"
1765                "cur_rx:%4.4d, dirty_rx:%4.4d\n",
1766                net_dev->name, sis_priv->cur_rx,
1767                sis_priv->dirty_rx);
1768        break;
1769      }
1770
1771      pci_unmap_single(sis_priv->pci_dev,
1772        sis_priv->rx_ring[entry].bufptr, RX_BUF_SIZE,
1773        PCI_DMA_FROMDEVICE);
1774      /* give the socket buffer to upper layers */
1775      skb = sis_priv->rx_skbuff[entry];
1776      skb_put(skb, rx_size);
1777      skb->protocol = eth_type_trans(skb, net_dev);
1778      netif_rx(skb);
1779
1780      /* some network statistics */
1781      if ((rx_status & BCAST) == MCAST)
1782        sis_priv->stats.multicast++;
1783      net_dev->last_rx = jiffies;
1784      sis_priv->stats.rx_bytes += rx_size;
1785      sis_priv->stats.rx_packets++;
1786
1787      /* refill the Rx buffer, what if there is not enought
1788       * memory for new socket buffer ?? */
1789      if ((skb = dev_alloc_skb(RX_BUF_SIZE)) == NULL) {
1790        /* not enough memory for skbuff, this makes a
1791         * "hole" on the buffer ring, it is not clear
1792         * how the hardware will react to this kind
1793         * of degenerated buffer */
1794        if (netif_msg_rx_status(sis_priv))
1795          printk(KERN_INFO "%s: Memory squeeze,"
1796            "deferring packet.\n",
1797            net_dev->name);
1798        sis_priv->rx_skbuff[entry] = NULL;
1799        /* reset buffer descriptor state */
1800        sis_priv->rx_ring[entry].cmdsts = 0;
1801        sis_priv->rx_ring[entry].bufptr = 0;
1802        sis_priv->stats.rx_dropped++;
1803        sis_priv->cur_rx++;
1804        break;
1805      }
1806      skb->dev = net_dev;
1807      sis_priv->rx_skbuff[entry] = skb;
1808      sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1809                  sis_priv->rx_ring[entry].bufptr =
1810        pci_map_single(sis_priv->pci_dev, skb->data,
1811          RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1812      sis_priv->dirty_rx++;
1813    }
1814    sis_priv->cur_rx++;
1815    entry = sis_priv->cur_rx % NUM_RX_DESC;
1816    rx_status = sis_priv->rx_ring[entry].cmdsts;
1817  } // while
1818
1819  /* refill the Rx buffer, what if the rate of refilling is slower
1820   * than consuming ?? */
1821  for (; sis_priv->cur_rx != sis_priv->dirty_rx; sis_priv->dirty_rx++) {
1822    struct sk_buff *skb;
1823
1824    entry = sis_priv->dirty_rx % NUM_RX_DESC;
1825
1826    if (sis_priv->rx_skbuff[entry] == NULL) {
1827      if ((skb = dev_alloc_skb(RX_BUF_SIZE)) == NULL) {
1828        /* not enough memory for skbuff, this makes a
1829         * "hole" on the buffer ring, it is not clear
1830         * how the hardware will react to this kind
1831         * of degenerated buffer */
1832        if (netif_msg_rx_err(sis_priv))
1833          printk(KERN_INFO "%s: Memory squeeze,"
1834            "deferring packet.\n",
1835            net_dev->name);
1836        sis_priv->stats.rx_dropped++;
1837        break;
1838      }
1839      skb->dev = net_dev;
1840      sis_priv->rx_skbuff[entry] = skb;
1841      sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1842                  sis_priv->rx_ring[entry].bufptr =
1843        pci_map_single(sis_priv->pci_dev, skb->data,
1844          RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1845    }
1846  }
1847  /* re-enable the potentially idle receive state matchine */
1848  outl(RxENA | inl(ioaddr + cr), ioaddr + cr );
1849
1850  return 0;
1851}
1852
1853/**
1854 *  sis900_finish_xmit - finish up transmission of packets
1855 *  @net_dev: the net device to be transmitted on
1856 *
1857 *  Check for error condition and free socket buffer etc
1858 *  schedule for more transmission as needed
1859 *  Note: This function is called by interrupt handler,
1860 *  don't do "too much" work here
1861 */
1862
1863static void sis900_finish_xmit (struct net_device *net_dev)
1864{
1865  struct sis900_private *sis_priv = net_dev->priv;
1866
1867  for (; sis_priv->dirty_tx != sis_priv->cur_tx; sis_priv->dirty_tx++) {
1868    struct sk_buff *skb;
1869    unsigned int entry;
1870    u32 tx_status;
1871
1872    entry = sis_priv->dirty_tx % NUM_TX_DESC;
1873    tx_status = sis_priv->tx_ring[entry].cmdsts;
1874
1875    if (tx_status & OWN) {
1876      /* The packet is not transmitted yet (owned by hardware) !
1877       * Note: the interrupt is generated only when Tx Machine
1878       * is idle, so this is an almost impossible case */
1879      break;
1880    }
1881
1882    if (tx_status & (ABORT | UNDERRUN | OWCOLL)) {
1883      /* packet unsuccessfully transmitted */
1884      if (netif_msg_tx_err(sis_priv))
1885        printk(KERN_DEBUG "%s: Transmit "
1886               "error, Tx status %8.8x.\n",
1887               net_dev->name, tx_status);
1888      sis_priv->stats.tx_errors++;
1889      if (tx_status & UNDERRUN)
1890        sis_priv->stats.tx_fifo_errors++;
1891      if (tx_status & ABORT)
1892        sis_priv->stats.tx_aborted_errors++;
1893      if (tx_status & NOCARRIER)
1894        sis_priv->stats.tx_carrier_errors++;
1895      if (tx_status & OWCOLL)
1896        sis_priv->stats.tx_window_errors++;
1897    } else {
1898      /* packet successfully transmitted */
1899      sis_priv->stats.collisions += (tx_status & COLCNT) >> 16;
1900      sis_priv->stats.tx_bytes += tx_status & DSIZE;
1901      sis_priv->stats.tx_packets++;
1902    }
1903    /* Free the original skb. */
1904    skb = sis_priv->tx_skbuff[entry];
1905    pci_unmap_single(sis_priv->pci_dev,
1906      sis_priv->tx_ring[entry].bufptr, skb->len,
1907      PCI_DMA_TODEVICE);
1908    dev_kfree_skb_irq(skb);
1909    sis_priv->tx_skbuff[entry] = NULL;
1910    sis_priv->tx_ring[entry].bufptr = 0;
1911    sis_priv->tx_ring[entry].cmdsts = 0;
1912  }
1913
1914  if (sis_priv->tx_full && netif_queue_stopped(net_dev) &&
1915      sis_priv->cur_tx - sis_priv->dirty_tx < NUM_TX_DESC - 4) {
1916    /* The ring is no longer full, clear tx_full and schedule
1917     * more transmission by netif_wake_queue(net_dev) */
1918    sis_priv->tx_full = 0;
1919    netif_wake_queue (net_dev);
1920  }
1921}
1922
1923/**
1924 *  sis900_close - close sis900 device
1925 *  @net_dev: the net device to be closed
1926 *
1927 *  Disable interrupts, stop the Tx and Rx Status Machine
1928 *  free Tx and RX socket buffer
1929 */
1930
1931static int sis900_close(struct net_device *net_dev)
1932{
1933  long ioaddr = net_dev->base_addr;
1934  struct sis900_private *sis_priv = net_dev->priv;
1935  struct sk_buff *skb;
1936  int i;
1937
1938  netif_stop_queue(net_dev);
1939
1940  /* Disable interrupts by clearing the interrupt mask. */
1941  outl(0x0000, ioaddr + imr);
1942  outl(0x0000, ioaddr + ier);
1943
1944  /* Stop the chip's Tx and Rx Status Machine */
1945  outl(RxDIS | TxDIS | inl(ioaddr + cr), ioaddr + cr);
1946
1947  del_timer(&sis_priv->timer);
1948
1949  free_irq(net_dev->irq, net_dev);
1950
1951  /* Free Tx and RX skbuff */
1952  for (i = 0; i < NUM_RX_DESC; i++) {
1953    skb = sis_priv->rx_skbuff[i];
1954    if (skb) {
1955      pci_unmap_single(sis_priv->pci_dev,
1956        sis_priv->rx_ring[i].bufptr,
1957        RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1958      dev_kfree_skb(skb);
1959      sis_priv->rx_skbuff[i] = NULL;
1960    }
1961  }
1962  for (i = 0; i < NUM_TX_DESC; i++) {
1963    skb = sis_priv->tx_skbuff[i];
1964    if (skb) {
1965      pci_unmap_single(sis_priv->pci_dev,
1966        sis_priv->tx_ring[i].bufptr, skb->len,
1967        PCI_DMA_TODEVICE);
1968      dev_kfree_skb(skb);
1969      sis_priv->tx_skbuff[i] = NULL;
1970    }
1971  }
1972
1973  /* Green! Put the chip in low-power mode. */
1974
1975  return 0;
1976}
1977
1978/**
1979 *  sis900_get_drvinfo - Return information about driver
1980 *  @net_dev: the net device to probe
1981 *  @info: container for info returned
1982 *
1983 *  Process ethtool command such as "ehtool -i" to show information
1984 */
1985
1986static void sis900_get_drvinfo(struct net_device *net_dev,
1987             struct ethtool_drvinfo *info)
1988{
1989  struct sis900_private *sis_priv = net_dev->priv;
1990
1991  strcpy (info->driver, SIS900_MODULE_NAME);
1992  strcpy (info->version, SIS900_DRV_VERSION);
1993  strcpy (info->bus_info, pci_name(sis_priv->pci_dev));
1994}
1995
1996static u32 sis900_get_msglevel(struct net_device *net_dev)
1997{
1998  struct sis900_private *sis_priv = net_dev->priv;
1999  return sis_priv->msg_enable;
2000}
2001
2002static void sis900_set_msglevel(struct net_device *net_dev, u32 value)
2003{
2004  struct sis900_private *sis_priv = net_dev->priv;
2005  sis_priv->msg_enable = value;
2006}
2007
2008static u32 sis900_get_link(struct net_device *net_dev)
2009{
2010  struct sis900_private *sis_priv = net_dev->priv;
2011  return mii_link_ok(&sis_priv->mii_info);
2012}
2013
2014static int sis900_get_settings(struct net_device *net_dev,
2015        struct ethtool_cmd *cmd)
2016{
2017  struct sis900_private *sis_priv = net_dev->priv;
2018  spin_lock_irq(&sis_priv->lock);
2019  mii_ethtool_gset(&sis_priv->mii_info, cmd);
2020  spin_unlock_irq(&sis_priv->lock);
2021  return 0;
2022}
2023
2024static int sis900_set_settings(struct net_device *net_dev,
2025        struct ethtool_cmd *cmd)
2026{
2027  struct sis900_private *sis_priv = net_dev->priv;
2028  int rt;
2029  spin_lock_irq(&sis_priv->lock);
2030  rt = mii_ethtool_sset(&sis_priv->mii_info, cmd);
2031  spin_unlock_irq(&sis_priv->lock);
2032  return rt;
2033}
2034
2035static int sis900_nway_reset(struct net_device *net_dev)
2036{
2037  struct sis900_private *sis_priv = net_dev->priv;
2038  return mii_nway_restart(&sis_priv->mii_info);
2039}
2040
2041/**
2042 *  sis900_set_wol - Set up Wake on Lan registers
2043 *  @net_dev: the net device to probe
2044 *  @wol: container for info passed to the driver
2045 *
2046 *  Process ethtool command "wol" to setup wake on lan features.
2047 *  SiS900 supports sending WoL events if a correct packet is received,
2048 *  but there is no simple way to filter them to only a subset (broadcast,
2049 *  multicast, unicast or arp).
2050 */
2051
2052static int sis900_set_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2053{
2054  struct sis900_private *sis_priv = net_dev->priv;
2055  long pmctrl_addr = net_dev->base_addr + pmctrl;
2056  u32 cfgpmcsr = 0, pmctrl_bits = 0;
2057
2058  if (wol->wolopts == 0) {
2059    pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2060    cfgpmcsr &= ~PME_EN;
2061    pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2062    outl(pmctrl_bits, pmctrl_addr);
2063    if (netif_msg_wol(sis_priv))
2064      printk(KERN_DEBUG "%s: Wake on LAN disabled\n", net_dev->name);
2065    return 0;
2066  }
2067
2068  if (wol->wolopts & (WAKE_MAGICSECURE | WAKE_UCAST | WAKE_MCAST
2069        | WAKE_BCAST | WAKE_ARP))
2070    return -EINVAL;
2071
2072  if (wol->wolopts & WAKE_MAGIC)
2073    pmctrl_bits |= MAGICPKT;
2074  if (wol->wolopts & WAKE_PHY)
2075    pmctrl_bits |= LINKON;
2076
2077  outl(pmctrl_bits, pmctrl_addr);
2078
2079  pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2080  cfgpmcsr |= PME_EN;
2081  pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2082  if (netif_msg_wol(sis_priv))
2083    printk(KERN_DEBUG "%s: Wake on LAN enabled\n", net_dev->name);
2084
2085  return 0;
2086}
2087
2088static void sis900_get_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2089{
2090  long pmctrl_addr = net_dev->base_addr + pmctrl;
2091  u32 pmctrl_bits;
2092
2093  pmctrl_bits = inl(pmctrl_addr);
2094  if (pmctrl_bits & MAGICPKT)
2095    wol->wolopts |= WAKE_MAGIC;
2096  if (pmctrl_bits & LINKON)
2097    wol->wolopts |= WAKE_PHY;
2098
2099  wol->supported = (WAKE_PHY | WAKE_MAGIC);
2100}
2101
2102static const struct ethtool_ops sis900_ethtool_ops = {
2103  .get_drvinfo  = sis900_get_drvinfo,
2104  .get_msglevel = sis900_get_msglevel,
2105  .set_msglevel = sis900_set_msglevel,
2106  .get_link = sis900_get_link,
2107  .get_settings = sis900_get_settings,
2108  .set_settings = sis900_set_settings,
2109  .nway_reset = sis900_nway_reset,
2110  .get_wol  = sis900_get_wol,
2111  .set_wol  = sis900_set_wol
2112};
2113
2114/**
2115 *  mii_ioctl - process MII i/o control command
2116 *  @net_dev: the net device to command for
2117 *  @rq: parameter for command
2118 *  @cmd: the i/o command
2119 *
2120 *  Process MII command like read/write MII register
2121 */
2122
2123static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
2124{
2125  struct sis900_private *sis_priv = net_dev->priv;
2126  struct mii_ioctl_data *data = if_mii(rq);
2127
2128  switch(cmd) {
2129  case SIOCGMIIPHY:   /* Get address of MII PHY in use. */
2130    data->phy_id = sis_priv->mii->phy_addr;
2131    /* Fall Through */
2132
2133  case SIOCGMIIREG:   /* Read MII PHY register. */
2134    data->val_out = mdio_read(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f);
2135    return 0;
2136
2137  case SIOCSMIIREG:   /* Write MII PHY register. */
2138    if (!capable(CAP_NET_ADMIN))
2139      return -EPERM;
2140    mdio_write(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
2141    return 0;
2142  default:
2143    return -EOPNOTSUPP;
2144  }
2145}
2146
2147/**
2148 *  sis900_get_stats - Get sis900 read/write statistics
2149 *  @net_dev: the net device to get statistics for
2150 *
2151 *  get tx/rx statistics for sis900
2152 */
2153
2154static struct net_device_stats *
2155sis900_get_stats(struct net_device *net_dev)
2156{
2157  struct sis900_private *sis_priv = net_dev->priv;
2158
2159  return &sis_priv->stats;
2160}
2161
2162/**
2163 *  sis900_set_config - Set media type by net_device.set_config
2164 *  @dev: the net device for media type change
2165 *  @map: ifmap passed by ifconfig
2166 *
2167 *  Set media type to 10baseT, 100baseT or 0(for auto) by ifconfig
2168 *  we support only port changes. All other runtime configuration
2169 *  changes will be ignored
2170 */
2171
2172static int sis900_set_config(struct net_device *dev, struct ifmap *map)
2173{
2174  struct sis900_private *sis_priv = dev->priv;
2175  struct mii_phy *mii_phy = sis_priv->mii;
2176
2177  u16 status;
2178
2179  if ((map->port != (u_char)(-1)) && (map->port != dev->if_port)) {
2180    /* we switch on the ifmap->port field. I couldn't find anything
2181     * like a definition or standard for the values of that field.
2182     * I think the meaning of those values is device specific. But
2183     * since I would like to change the media type via the ifconfig
2184     * command I use the definition from linux/netdevice.h
2185     * (which seems to be different from the ifport(pcmcia) definition) */
2186    switch(map->port){
2187    case IF_PORT_UNKNOWN: /* use auto here */
2188      dev->if_port = map->port;
2189      /* we are going to change the media type, so the Link
2190       * will be temporary down and we need to reflect that
2191       * here. When the Link comes up again, it will be
2192       * sensed by the sis_timer procedure, which also does
2193       * all the rest for us */
2194      netif_carrier_off(dev);
2195
2196      /* read current state */
2197      status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2198
2199      /* enable auto negotiation and reset the negotioation
2200       * (I don't really know what the auto negatiotiation
2201       * reset really means, but it sounds for me right to
2202       * do one here) */
2203      mdio_write(dev, mii_phy->phy_addr,
2204           MII_CONTROL, status | MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
2205
2206      break;
2207
2208    case IF_PORT_10BASET: /* 10BaseT */
2209      dev->if_port = map->port;
2210
2211      /* we are going to change the media type, so the Link
2212       * will be temporary down and we need to reflect that
2213       * here. When the Link comes up again, it will be
2214       * sensed by the sis_timer procedure, which also does
2215       * all the rest for us */
2216      netif_carrier_off(dev);
2217
2218      /* set Speed to 10Mbps */
2219      /* read current state */
2220      status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2221
2222      /* disable auto negotiation and force 10MBit mode*/
2223      mdio_write(dev, mii_phy->phy_addr,
2224           MII_CONTROL, status & ~(MII_CNTL_SPEED |
2225          MII_CNTL_AUTO));
2226      break;
2227
2228    case IF_PORT_100BASET: /* 100BaseT */
2229    case IF_PORT_100BASETX: /* 100BaseTx */
2230      dev->if_port = map->port;
2231
2232      /* we are going to change the media type, so the Link
2233       * will be temporary down and we need to reflect that
2234       * here. When the Link comes up again, it will be
2235       * sensed by the sis_timer procedure, which also does
2236       * all the rest for us */
2237      netif_carrier_off(dev);
2238
2239      /* set Speed to 100Mbps */
2240      /* disable auto negotiation and enable 100MBit Mode */
2241      status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2242      mdio_write(dev, mii_phy->phy_addr,
2243           MII_CONTROL, (status & ~MII_CNTL_SPEED) |
2244           MII_CNTL_SPEED);
2245
2246      break;
2247
2248    case IF_PORT_10BASE2: /* 10Base2 */
2249    case IF_PORT_AUI: /* AUI */
2250    case IF_PORT_100BASEFX: /* 100BaseFx */
2251                  /* These Modes are not supported (are they?)*/
2252      return -EOPNOTSUPP;
2253      break;
2254
2255    default:
2256      return -EINVAL;
2257    }
2258  }
2259  return 0;
2260}
2261
2262/**
2263 *  sis900_mcast_bitnr - compute hashtable index
2264 *  @addr: multicast address
2265 *  @revision: revision id of chip
2266 *
2267 *  SiS 900 uses the most sigificant 7 bits to index a 128 bits multicast
2268 *  hash table, which makes this function a little bit different from other drivers
2269 *  SiS 900 B0 & 635 M/B uses the most significat 8 bits to index 256 bits
2270 *    multicast hash table.
2271 */
2272
2273static inline u16 sis900_mcast_bitnr(u8 *addr, u8 revision)
2274{
2275
2276  u32 crc = ether_crc(6, addr);
2277
2278  /* leave 8 or 7 most siginifant bits */
2279  if ((revision >= SIS635A_900_REV) || (revision == SIS900B_900_REV))
2280    return ((int)(crc >> 24));
2281  else
2282    return ((int)(crc >> 25));
2283}
2284
2285/**
2286 *  set_rx_mode - Set SiS900 receive mode
2287 *  @net_dev: the net device to be set
2288 *
2289 *  Set SiS900 receive mode for promiscuous, multicast, or broadcast mode.
2290 *  And set the appropriate multicast filter.
2291 *  Multicast hash table changes from 128 to 256 bits for 635M/B & 900B0.
2292 */
2293
2294static void set_rx_mode(struct net_device *net_dev)
2295{
2296  long ioaddr = net_dev->base_addr;
2297  struct sis900_private * sis_priv = net_dev->priv;
2298  u16 mc_filter[16] = {0};  /* 256/128 bits multicast hash table */
2299  int i, table_entries;
2300  u32 rx_mode;
2301
2302  /* 635 Hash Table entries = 256(2^16) */
2303  if((sis_priv->chipset_rev >= SIS635A_900_REV) ||
2304      (sis_priv->chipset_rev == SIS900B_900_REV))
2305    table_entries = 16;
2306  else
2307    table_entries = 8;
2308
2309  if (net_dev->flags & IFF_PROMISC) {
2310    /* Accept any kinds of packets */
2311    rx_mode = RFPromiscuous;
2312    for (i = 0; i < table_entries; i++)
2313      mc_filter[i] = 0xffff;
2314  } else if ((net_dev->mc_count > multicast_filter_limit) ||
2315       (net_dev->flags & IFF_ALLMULTI)) {
2316    /* too many multicast addresses or accept all multicast packet */
2317    rx_mode = RFAAB | RFAAM;
2318    for (i = 0; i < table_entries; i++)
2319      mc_filter[i] = 0xffff;
2320  } else {
2321    /* Accept Broadcast packet, destination address matchs our
2322     * MAC address, use Receive Filter to reject unwanted MCAST
2323     * packets */
2324    struct dev_mc_list *mclist;
2325    rx_mode = RFAAB;
2326    for (i = 0, mclist = net_dev->mc_list;
2327      mclist && i < net_dev->mc_count;
2328      i++, mclist = mclist->next) {
2329      unsigned int bit_nr =
2330        sis900_mcast_bitnr(mclist->dmi_addr, sis_priv->chipset_rev);
2331      mc_filter[bit_nr >> 4] |= (1 << (bit_nr & 0xf));
2332    }
2333  }
2334
2335  /* update Multicast Hash Table in Receive Filter */
2336  for (i = 0; i < table_entries; i++) {
2337                /* why plus 0x04 ??, That makes the correct value for hash table. */
2338    outl((u32)(0x00000004+i) << RFADDR_shift, ioaddr + rfcr);
2339    outl(mc_filter[i], ioaddr + rfdr);
2340  }
2341
2342  outl(RFEN | rx_mode, ioaddr + rfcr);
2343
2344  /* sis900 is capable of looping back packets at MAC level for
2345   * debugging purpose */
2346  if (net_dev->flags & IFF_LOOPBACK) {
2347    u32 cr_saved;
2348    /* We must disable Tx/Rx before setting loopback mode */
2349    cr_saved = inl(ioaddr + cr);
2350    outl(cr_saved | TxDIS | RxDIS, ioaddr + cr);
2351    /* enable loopback */
2352    outl(inl(ioaddr + txcfg) | TxMLB, ioaddr + txcfg);
2353    outl(inl(ioaddr + rxcfg) | RxATX, ioaddr + rxcfg);
2354    /* restore cr */
2355    outl(cr_saved, ioaddr + cr);
2356  }
2357
2358  return;
2359}
2360
2361/**
2362 *  sis900_reset - Reset sis900 MAC
2363 *  @net_dev: the net device to reset
2364 *
2365 *  reset sis900 MAC and wait until finished
2366 *  reset through command register
2367 *  change backoff algorithm for 900B0 & 635 M/B
2368 */
2369
2370static void sis900_reset(struct net_device *net_dev)
2371{
2372  struct sis900_private * sis_priv = net_dev->priv;
2373  long ioaddr = net_dev->base_addr;
2374  int i = 0;
2375  u32 status = TxRCMP | RxRCMP;
2376
2377  outl(0, ioaddr + ier);
2378  outl(0, ioaddr + imr);
2379  outl(0, ioaddr + rfcr);
2380
2381  outl(RxRESET | TxRESET | RESET | inl(ioaddr + cr), ioaddr + cr);
2382
2383  /* Check that the chip has finished the reset. */
2384  while (status && (i++ < 1000)) {
2385    status ^= (inl(isr + ioaddr) & status);
2386  }
2387
2388  if( (sis_priv->chipset_rev >= SIS635A_900_REV) ||
2389      (sis_priv->chipset_rev == SIS900B_900_REV) )
2390    outl(PESEL | RND_CNT, ioaddr + cfg);
2391  else
2392    outl(PESEL, ioaddr + cfg);
2393}
2394
2395/**
2396 *  sis900_remove - Remove sis900 device
2397 *  @pci_dev: the pci device to be removed
2398 *
2399 *  remove and release SiS900 net device
2400 */
2401
2402static void __devexit sis900_remove(struct pci_dev *pci_dev)
2403{
2404  struct net_device *net_dev = pci_get_drvdata(pci_dev);
2405  struct sis900_private * sis_priv = net_dev->priv;
2406  struct mii_phy *phy = NULL;
2407
2408  while (sis_priv->first_mii) {
2409    phy = sis_priv->first_mii;
2410    sis_priv->first_mii = phy->next;
2411    kfree(phy);
2412  }
2413
2414  pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
2415    sis_priv->rx_ring_dma);
2416  pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
2417    sis_priv->tx_ring_dma);
2418  unregister_netdev(net_dev);
2419  free_netdev(net_dev);
2420  pci_release_regions(pci_dev);
2421  pci_set_drvdata(pci_dev, NULL);
2422}
2423
2424#ifdef CONFIG_PM
2425
2426static int sis900_suspend(struct pci_dev *pci_dev, pm_message_t state)
2427{
2428  struct net_device *net_dev = pci_get_drvdata(pci_dev);
2429  long ioaddr = net_dev->base_addr;
2430
2431  if(!netif_running(net_dev))
2432    return 0;
2433
2434  netif_stop_queue(net_dev);
2435  netif_device_detach(net_dev);
2436
2437  /* Stop the chip's Tx and Rx Status Machine */
2438  outl(RxDIS | TxDIS | inl(ioaddr + cr), ioaddr + cr);
2439
2440  pci_set_power_state(pci_dev, PCI_D3hot);
2441  pci_save_state(pci_dev);
2442
2443  return 0;
2444}
2445
2446static int sis900_resume(struct pci_dev *pci_dev)
2447{
2448  struct net_device *net_dev = pci_get_drvdata(pci_dev);
2449  struct sis900_private *sis_priv = net_dev->priv;
2450  long ioaddr = net_dev->base_addr;
2451
2452  if(!netif_running(net_dev))
2453    return 0;
2454  pci_restore_state(pci_dev);
2455  pci_set_power_state(pci_dev, PCI_D0);
2456
2457  sis900_init_rxfilter(net_dev);
2458
2459  sis900_init_tx_ring(net_dev);
2460  sis900_init_rx_ring(net_dev);
2461
2462  set_rx_mode(net_dev);
2463
2464  netif_device_attach(net_dev);
2465  netif_start_queue(net_dev);
2466
2467  /* Workaround for EDB */
2468  sis900_set_mode(ioaddr, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
2469
2470  /* Enable all known interrupts by setting the interrupt mask. */
2471  outl((RxSOVR|RxORN|RxERR|RxOK|TxURN|TxERR|TxIDLE), ioaddr + imr);
2472  outl(RxENA | inl(ioaddr + cr), ioaddr + cr);
2473  outl(IE, ioaddr + ier);
2474
2475  sis900_check_mode(net_dev, sis_priv->mii);
2476
2477  return 0;
2478}
2479#endif /* CONFIG_PM */
2480
2481static struct pci_driver sis900_pci_driver = {
2482  .name   = SIS900_MODULE_NAME,
2483  .id_table = sis900_pci_tbl,
2484  .probe    = sis900_probe,
2485  .remove   = __devexit_p(sis900_remove),
2486#ifdef CONFIG_PM
2487  .suspend  = sis900_suspend,
2488  .resume   = sis900_resume,
2489#endif /* CONFIG_PM */
2490};
2491
2492static int __init sis900_init_module(void)
2493{
2494/* when a module, this is printed whether or not devices are found in probe */
2495#ifdef MODULE
2496  printk(version);
2497#endif
2498
2499  return pci_register_driver(&sis900_pci_driver);
2500}
2501
2502static void __exit sis900_cleanup_module(void)
2503{
2504  pci_unregister_driver(&sis900_pci_driver);
2505}
2506
2507module_init(sis900_init_module);
2508module_exit(sis900_cleanup_module);
2509
Note: See TracBrowser for help on using the repository browser.