‘cloudera

‘cloudera

Importing data from MySQL

Unstructured data is useful

. Take everyone’s favorite example, log parsing:

207.181.42.20 - - [07/Feb/2003:11:38:28 -0800] "GET
/archive/2003/02/01/space_sh.shtml HTTP/1.1" 200 11966
"http://www.google.com/search?hl=en&lr=&ie=UTF-8&0e=UTF-
8&g=Space+Shuttle+Columbia+November+2002" "Mozilla/4.0
(compatible; MSIE 6.0; Windows 98; Q312461)"

ip—-address identd authuser [DD/MMM/YYYY:hh:mm:ss TZ]
"request string" status bytes '"referrer" "user-agent"

Structured data is useful

. Utility of unstructured data improved by structured data

. E.g., IP Geolocation resolves IP addresses to city, state, country
- ~100 MB of data
- Available as SQL database dump

Joining data

- Problem: Merge the log records with IP geolocation data

. Too much log data to dump to SQL db, how to bring db to us?
-Hadoop MapReduce, Hive, Pig... all work from HDFS!

DBInputFormat

. Connects to JDBC interface

. Selects records out of tables, arbitrary queries

. Provides interface to use arbitrary input queries, tables, databases
. Records written to DBWritable, provided as value to Mapper

. Constraints:

. Must be able to totally order results (e.g., by primary key)
. Must be able to count expected result set size ahead of time

DBWritable

-You define a class to hold a row from the database
Must be able to read from JDBC ResultSet into fields
Must be able to write to JDBC PreparedStatement

- Should also implement regular Writable

Configuration Example

1.JobConf conf = new JobConf (getConf (), Foo.class);

2.conf .setInputFormat (DBInputFormat.class);

w

.DBConfiguration.configureDB (conf,

a. “com.mysql. jdbc.Driver”,

($)

“jdbc:mysql://localhost/mydatabase”) ;

o)

.String [] fields = { “my_pkey”, “my value” };

~

.DBInputFormat.setInput (conf, MyRecord.class, "“mytable”,
8. null, “my_pkey”, fields);

.// set Mapper, etc., and call JobClient.runJob (conf);

o

DBWritable Example

1.class MyRecord implements Writable, DBWritable {
2. long pkey;

3. long val;

'

public void readFields (DataInput in) throws IOException ({
5. this.pkey = in.readLong();

6. this.val = in.readLong();

(00]

public void readFields (ResultSet resultSet)
9. throws SQLException {

10. this.pkey = resultSet.getLong(1l);

11. this.val = resultSet.getLong(2);

12. }

Parallelism and scalability

Prepares statement of the form:
“SELECT .. ORDER BY .. LIMIT .. OFFSET ..”

for each Mapper
InputSplit corresponds to OFFSET into query
(Counting query required ahead of time to determine split count)

Scalability limited by bandwidth of the database server

100 Mappers/Reducers would easily saturate the pipe from one
node

Could be used once to do a bulk import into HDFS for Hive, etc.

DBOutputFormat

- Define the table and fields to populate with results from
MapReduce job

- Individual values emitted by Reducers are bundled into SQL
transaction
All committed at end of reduce operation (during close())

- DBWritable interface provides write (PreparedStatement stmt)

Flexibility

- Any JDBC database can work (MySQL, Postgres, HSQLdDb...)
. Supports quick read-in of existing tables for ad-hoc jobs

. Database sharding currently would need to be handled at db side
. Future work: support client-side row-level sharding

Conclusions

. Good for ad-hoc queries
. May be useful for bulk loading database into Hive
. Straightforward interface extends existing MapReduce API

. Available in Hadoop 0.19

. (But HADOOP-2536 can be applied to 0.18.x without much
difficulty)

Cloudera

) 2008 Cloudera, Inc. or its licensors. "Cloudera" is a registered trademark of Cloudera, Inc.. All rights reserved. 1.0

