

HBase
Introduction

Andrew Purtell
andrew_purtell@trendmicro.com

apurtell@apache.org

mailto:andrew_purtell@trendmicro.com
mailto:apurtell@apache.org

Big Data

Big Data defined
● Scale beyond the limits of conventional data storage

solutions today either in terms of capacity or of the
sustainable cost of the solution
● Trillions (10^12) of data items
● Petabytes (10^15 bytes) of data volume

● Google encountered Big Data in their operations and
devised architectural solutions for it, including BigTable

● BigTable is the inspiration for HBase

The Big Data Age
● According to one estimate, globally

the world created 150 exabytes of
data in 2005

● This year, the world may create
more than 1,500 exabytes of data

Medium Data
● “What about Medium Data? We like to say that

Facebook doesn’t run Hadoop because it has a lot of
data, but that Facebook has a lot of data because it
runs Hadoop. Businesses that use Hadoop find that
keeping data is worthwhile because Hadoop helps
them process it in new ways.”

Mike Olson, CEO, Cloudera
http://www.cloudera.com/

● Many business, even small ones, during the course of
their normal operations can generate petabytes of
data per year

● If they retain it, they can mine it and gain insights
● Open source analytics enablers like the Hadoop

software ecosystem – of which HBase is a part –
make this an emerging reality

http://www.cloudera.com/

Cloud Computing
● "Internet-based access to highly scalable pay-per-use

IT capabilities"
- Ynema Mangum, SUN Microsystems

● An evolution of network computing
● Workstation → Network → Grid → Cloud
● Cloud computing is client-server computing that abstracs the

details of the server away
● Scale free
● Resources anywhere/everywhere
● Loosely coupled computing
● Decentralized, open standards
● Open technologies
● New ownership model

Cloud Computing
● Scale free computing
● A limitless pool of on demand resources is a game

changer
● Pay by use instead of provisioning for peak
● Elastic scaling up and down, scale up very large
● Optimize costs to actual service demand
● Worry only about the application or service, not about

infrastructure

Unused resources

Static data center Data center in the cloud

Demand

Capacity

Time

Demand

Capacity

Time

Convergence
● As we enter the age of Big Data we have the scale

(and scale-free computational nature) of the Cloud to
manage it

● The Cloud is a driver of Big Data even as it is a means
to deal with it

● Hadoop and HBase are Cloud scale architectures
→ Container for Big (and Medium) Data
→ Scale free computational framework for

managing it

Hadoop – The Platform
● An elastic and scalable computing platform
● “Cloud scale” grid data processing

● 10K nodes, 100 million files, 10 petabytes
● 2009 Gray Sort winner: 0.578 terabytes/minute, a new

world record
● Sort a terabyte (1,000,000,000,000 bytes) in 62 seconds
● Sort a petabyte (1,000,000,000,000,000 bytes) in 16.25 hours

Hadoop – The Ecosystem
● MapReduce framework (Core)
● Pluggable cluster task scheduler (Core)
● Distributed replicated fault tolerant file system (HDFS)
● Horizontally scalable distributed fault tolerant database

(HBase)
● Various value adds: Add on packages (analytics,

management), distributions, dashboards, etc.

HDFS
(Hadoop Distributed File System)

HBase (Distributed Map)

MapReduce (Computation)

Hive

BI, ETL

A
vr

o
(S

er
ia

liz
at

io
n)

Z
oo

ke
ep

r
(C

oo
rd

in
at

io
n) Sqoop

RDBMS

Pig

ETL

Seek Versus Sort and Merge
● At scale, disk time dominates storage and computation

● CPU, RAM, and disk size double every 18-24 months
● Seek time remains nearly constant (~5% per year)

● Two database paradigms
● Seek dominant: Indexed (B-Tree) seek and replace (RDBMS)
● Transfer dominant: sort/merge (MapReduce, Bigtable)

● Seek is inefficient compared to transfer at scale
● Given:

– 10 MB/second transfer bandwidth
– 10 milliseconds disk seek time
– 100 bytes per entry (10 billion entries)
– 10 kB per page (1 billion pages)

● Updating 1% of entries (100,000,000) takes:
– 1,000 days with random B-Tree updates
– 100 days with batched B-Tree updates
– 1 day with sort and merge

 → Log structured data access on streaming filesystem

HBase – The Hadoop Database
● A persistent distributed hash map

... and separate namespaces

 → Tables

... and an index

 → Rows

... and locality of I/O references

 → Column families

... and time ranges

 → Timestamps

HBase – The Hadoop Database
● Google: “BigTable is a distributed storage system for

managing structured data that is designed to scale to
a very large size: petabytes of data across thousands
of commodity servers”

● Goal: Store billions of rows * millions of columns *
thousands of versions

● An open source version of BigTable, enhanced with
additional features developed by the community

● A Hadoop subproject
● The usual ASF things apply (license, JIRA, etc)

● To handle Big Data, we discard transactions and
relational data models
● No distributed transactions
● No complex locking
● No waits or deadlocks
● Update through sort and merge instead of seek and replace

Data Model
● Distributed persistent sparse map
● Multidimensional keys

<row>, <column>:<qualifier>, <timestamp>
● Keys are arbitrary strings
● Data grouped by columns
● Access to row data is atomic
● Multiversioning and timestamps avoid edit conflicts

caused by concurrent decoupled processes

Grouped by Columns?
● Not a spreadsheet

● Instead, think of tags

Values of any length, no predefined names or widths

Tables And Regions
● Rows are stored in byte lexographic sorted order‐
● Tables are dynamically split into regions
● Regions are hosted on a number of regionservers
● As regions grow, they are split and distributed evenly

among the storage cluster to level load
● Splits are “almost” instantaneous
● Fine grained load balancing
● Regions are migrated away from highly

loaded nodes
● Enables fast recovery
● Master rapidly redeploys regions from

failed nodes to others

Integration with Hadoop
● With HDFS

● HBase relies on DFS replication for data durability and
availability

● WAL uses append feature
● Without HDFS, regions could not be migrated
● HBase compaction interacts faviorably with HDFS block

placement

● With ZooKeeper
● Track cluster membership and detect dead servers
● Supports master election and recovery in multi-master

deployments
● Automatic Master failover
● Rolling upgrades of point releases
● Modify some cluster configuration without full cluster restart

Integration with Hadoop
● With MapReduce

● TableInputFormat
● TableOutputFormat
● Splits correspond to regions for optimal I/O
● Tasks scheduled on RegionServers hosting the table regions

● This is first class
integration into the
Hadoop stack

Image credit: Lars George

Integration with Hadoop

Image credit: Lars George

The End
● Q&A

● Contact info:

Andrew Purtell
apurtell@apache.org
andrew_purtell@trendmicro.com

mailto:apurtell@apache.org
mailto:andrew_purtell@trendmicro.com

HBase
Coprocessors

Andrew Purtell
andrew_purtell@trendmicro.com

apurtell@apache.org

mailto:andrew_purtell@trendmicro.com
mailto:apurtell@apache.org

BigTable Coprocessors
● Inspired by Google Bigtable Coprocessors (Jeff

Dean's keynote talk at LADIS 09)
● Arbitrary code that runs at each tablet in table server
● High-level call interface for clients
● Calls addressed to rows or ranges of rows. coprocessor

client library resolves to actual locations
● Calls across multiple rows automatically split into multiple

parallelized RPC
● Very flexible model for building distributed services

● Automatic scaling, load balancing, request routing for app
● Example use cases

● Scalable metadata management for Colossus
● Distributed language model serving for machine translation

system
● Distributed query processing for fulltext indexing support
● Regular expression search support for code repository

HBase Coprocessors
● Inspired by BigTable Coprocessors

● Also a generic extension mechanism
● But reimagined as a server extension framework

● Coprocessors extend base HBase function
● In the site configuration (system coprocessors)
● Using a table attribute (table coprocessors)

– Table attribute is a path (e.g. HDFS URI) to jar file
– Jar is loaded into the regionservers when table regions are opened

● New functionality becomes part of the regionserver
implementation and runs in process

● Lifecycle methods
● RegionObserver: Watch or change when clients interact with

regions
● Endpoint: Provide a new service via dynamic RPC

● No more mutually exclusive subclassing of
RegionServer implementation and RPC interfaces!

Example

Extension Interfaces
● Coprocessor

● Basic lifecycle events: Start, stop
● Region housekeeping: Open, flush, compact, split, close

● Observer
● RegionObserver

– If a coprocessor implements this interface, it will be interposed in all
region actions via upcalls

● Provides hooks for client side requests: get, put, delete, etc.
● Chaining of multiple observers by priority; mediators can be chained

ahead of watchers to implement security policy extensions
● MasterObserver

– If a coprocessor implements this interface, it can intercept
administrative actions taken at the master for a region (load balance,
enable/disable, etc.)

● How to develop an Observer
– Implement interface and override upcall methods

Extension Interfaces (cont.)
● Observer

Extension Interfaces (cont.)
● Endpoint

● Provides a way to define one's own protocol communicated
between client and RegionServer, and execute arbitrary
code in the RegionServer process

● The communication protocol between the HBase client and
RegionServer is extended at runtime without recompilation

Extension Interfaces (cont.)
● Endpoint

● How to develop an Endpoint
– Define the protocol interface (extends CoprocessorProtocol)
– Implement this protocol interface

● Extend BaseCommandTarget so protocol will be automatically registered
at coprocessor load

– On client side, the Endpoint can be triggered by:
● HTable.proxy() - single region
● HTable.exec() - region range

Current Projects
● Access control

● Build access control into HBase using the Coprocessor
framework
– Fine grained execute permissions by table, role, creating user/role,

executing user/role
– Different security models can be implemented as coprocessors

● Meta JIRA is HBASE-1697
● Some early work as HBASE-3025

– Reject data access by nonauthorized user according to ACL
– Keep ACLs in META table
– Use ZooKeeper to propagate ACL changes made to META via put()

or delete() to permissions caches on all RegionServers
● Remaining work

– Add Kerberos plugin to ZooKeeper so ZK auth and ACLs can be
managed in a seamless manner with HBase ones

– Master side coprocessor hooks to get control over admin ops

Current Projects
● Aggregate operators

● HBASE-1512
● Add aggregate table ops as dynamic RPC extensions via

Endpoint
– count(), sum(), average(), etc.

● Preliminary patch on issue
● If you have interest, we encourage you to participate in the

design of this feature via the JIRA

Interesting Ideas
● Computational frameworks

● Cascading (cascading.org) execution target: Compiler and
runtime support for partitioning work over HBase cluster and
executing assemblies in parallel where the data is located

● Streaming data processing framework
● HDFS-DNN

● Proof-of-concept code for replacing the HDFS NameNode
with HBase

● This is roughly the architecture of Google's GFS2
● Scalable nameservice, no more NameNode singleton

reliability, availability, and scalability concerns
● FuzzyTable

● Fuzzy matching against keys that encode high dimensional
data

● Application domain is low latency biometrics search

Future Direction
● Code weaving

● Start with allowing arbitrary code
● Use a rewriting framework like ASM to weave in policies at

load time
● Build policies over time which improve fault isolation and

system integrity protections
– Wrap heap allocations to enforce limits
– Insert monitor code in loop headers to detect and throw execeptions

if CPU time limits are exceeded, e.g. Infinite loops
– Reject APIs considered unsafe

● Parallel computation framework
● Hadoop MapReduce API (mappers, reducers, partitioners,

intermediates) but parallel region MapReduce ?
● Stream processing paradigm

– Cascading or S4

The End
● Q&A

● Contact info:

Andrew Purtell
apurtell@apache.org
andrew_purtell@trendmicro.com

mailto:apurtell@apache.org
mailto:andrew_purtell@trendmicro.com

Secure HBase
Hadoop Group @ Trend Micro: Andrew Purtell, Gary

Helmling, Joshua Ho, Eugene Koontz, Mingjie Lai

Background
● No real security in Hadoop 0.20.x and prior

● User impersonation trivial
● No mutual client/server authentication
● File permission enforcement assumes good actors
● Instead clusters secured at the perimeter
● With no FS security, HBase security would make no

sense
● Security features in Yahoo Hadoop 0.20.S and ASF

Hadoop 0.21+
● Strong authentication using Kerberos
● Mutual authentication of RPC connections
● Data isolation at HDFS level
● Multiple groups can share the same cluster
● HBase security now a possibility

Overview
● Why?

● User isolation (control over your data)
● Multi-tenancy: private and public cloud

● What is it?
● Client access to HBase is authenticated
● User data is private unless access has been granted
● Access to data can be granted at a table or per column

family basis
● What is it not?

● Row-level or per value (cell)
● Push down of file ownership to HDFS
● Full Role Based Access Control

Concepts
● Authentication

● Who are you?
● Authorization

● Can user A do action X within context Y?
● Isolation

● System-wide concern
● Requires enforcement of authorization internally
● Authorization useless if system leaks data in other ways

– Observability of storage files
– Eavesdropping on data in transit

Authentication
● Need to be able to confirm identities
● Building on Secure Hadoop RPC

● Client authentication based on Kerberos
– allows servers to verify client credentials with trusted third party

● Secure RPC based on SASL
– can provide confidential communications between HBase clients

and servers via GSSAPI/Kerberos
– also supports DIGEST-MD5 authentication, allowing Hadoop

delegation token use for MapReduce

Authorization
● Default deny policy – full user isolation
● Permissions

● Read, Write, Execute, Create, Admin
● Permission Grants

● Principal: user or group
● Scope: table, optional column family
● Permissions

● Built-in Roles
● Superuser: full access
● Table owner: full access to table, plus delegation

Isolation
● Optional RPC encryption with SASL
● Secure Hadoop

● HDFS permissions to restrict access
● Table HFiles owned by HBase system user

● HBase mediates access to table data
● column family granularity
● -ROOT- and .META. readable by all

– potential leakage of row key data

How?
● Access Control Lists (ACLs)

● Store combination of principal, scope, permissions
● Coprocessors

● Intercept data operations to perform authorization checks
● Permission Synchronization : .META. to ZK to

RegionServers
● Reflects ACL changes across entire cluster

Access Control Lists
Canonical Storage : .META.'s acl: column family

hbase> create 'foo', 'f1'
hbase> grant 'herbert', 'RW', 'foo'
hbase> scan '.META.'
ROW COLUMN+CELL
 foo,,1286569... column=acl:herbert, timestamp=1286569..., value=RW
...

Client interface
● hbase shell 'grant' command:

Logical

Principal Table:ColumnFamily Permissions

humphrey foo:* {READ,WRITE}

.META. acl:

Row Qualifier Value

foo,,1286569... humphrey RW

Coprocessors
● AccessController: the "checking" in permissions

checking
● Anatomy of a client request

Component User Action Class Method

1 client U sends IPC call C: <U,'get',T> to
regionserver.

HTable get()

2 regionserver S Receives C:<U,'get',T>. HBase
Server

processData()

3 regionserver S→U U.doAs('get',T) run()

4 regionserver U Check in-memory Permission Mirror:
UserPerms =
getUserPermissions(UserGroupInformati
on.getCurrentUser(),T)

Access
Controll
er

preGet()

5 regionserver U if (UserPerms imply Get)
 then return;
 else throw
AccessDeniedException;

6 client U Receives either get() return value or
AccessDeniedException

HTable get()

Synchronizing ACLs
● .META. -> ZK -> Region servers

Synchronizing ACLs

1).META. To ZooKeeper
• On initial load populates ZK znode per table
• Grant updates to .META. also update ZK

2)ZooKeeper to RegionServers

Synchronizing ACLs

1).META. To ZooKeeper
2)ZooKeeper to RSs

• Znode watcher notified
of data change

• New permissions
loaded into local cache

Next Steps
● Handling of Master Operations

● Create and Admin permissions
● Delegation token authentication for MapReduce
● Additional permissions

● Execute, Create, Admin
● Roles

● Current implementation is really ACL not RBAC
● ZooKeeper Kerberos auth plugin
● Audit logging
● More granular access control

● Per row or per KV?
● Would be implemented via meta-columns

For More Information
● HBase blog: Secure HBase by Eugene Koontz
● HBase JIRA

● HBASE-1697: Discrentionary access control (umbrella
issue)

● HBASE-3025: Coprocessor based access control
● Code

● http://github.com/trendmicro/hbase/tree/security

http://hbaseblog.com/2010/10/11/secure-hbase-access-controls/
http://github.com/trendmicro/hbase/tree/security

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

