Canonical Image Selection for Large-scale Flickr Photos using Hadoop

Guan-Long Wu National Taiwan University, Taipei

Nov. 10, 2009, @NCHC

Communication and Multimedia Lab (通訊與多媒體實驗室), Department of Computer Science and Information Engineering, NTU (台大資訊系) http://www.csie.ntu.edu.tw/~b95109

Note that parts of the slides are thanks to Prof. Winston Hsu and Liang-Chi Hsieh, CMLab , NTU

Team Members (MiRA group, CMLab, NTU)

- Prof. Winston H. Hsu
- Liang-Chi Hsieh
- Kuan-Ting Chen
- Chien-Hsing Chiang
- Yi-Hsuan Yang

- Guan-Long Wu
- Chun-Sung Ferng
- Hsiu-Wen Hsueh
- Angela Charng-Rurng Tsai

Who am I?

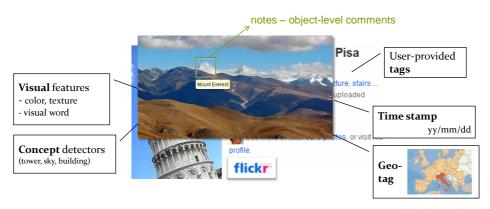
- A senior undergraduate student of NTU CSIE

- Research Interests
 - Multimedia (CMLab, NTU. Advisor: Winston H. Hsu)
 - Artificial Intelligence (iAgent Lab, NTU. Advisor: Jane Yung-jen Hsu)
 - Bioinformatics (NYMU. Advisor: Yeou-Guang Tsay)
- Contact b95109@csie.ntu.edu.tw

NCHC, November 2009 – Guan-Long Wu

Outline

- Introduction context cues in social media
- Efficient image search result clustering
- Demo
- Concept of Hadoop Implementation
 - Image Pairwise Image Similarity
 - Affinity propagation
- Comparing with previous approaches
- Conclusions

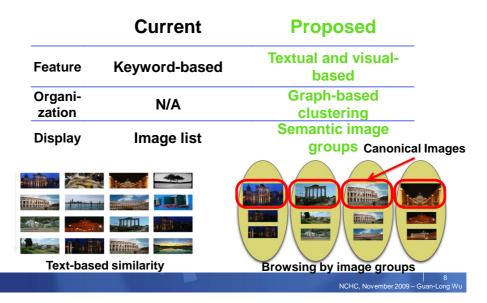

Challenges and Opportunities from Large-Scale Social Media

- Growing practice of online media sharing
- Billion-scale magnitude
- Bringing profound impacts to new applications and user scenarios
- The technologies do not keep pace with the growth
 - e.g., search, mining, visualization, and other promising applications

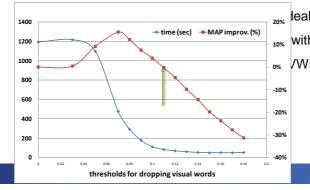
ICHC, November 2009 - Guan-Long Wu

Rich Context Cues in Social Media - Flickr Example

- Rich textual and visual cues, device metadata, and user interactions for social and organizing purposes
 - Geo-locations, time, camera settings (e.g., shutter speed, focal length, flash, etc.)
 - User-provided tags, descriptions, notes, etc.
 - Comments, bookmarks, favorites (subjective)


Social Media Visualization

- Select canonical views to represent a landmark [Kennedy et al., WWW'08]
 - Apply clustering algorithm (e.g. K-means) from tagged photos
 - Select one image from each cluster (assumed to be visually dissimilar)
- Extremely time-consuming and NOT for online image search result clustering
 - Pair-wise similarity
 - Clustering algorithms


NCHC, November 2009 - Guan-Long Wu

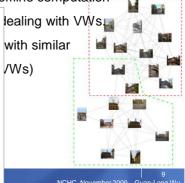
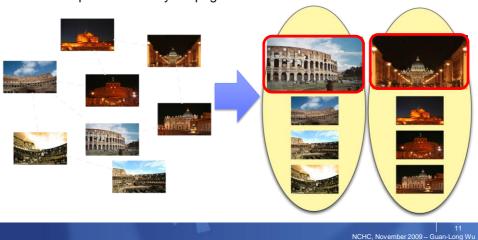

Efficient image search result clustering

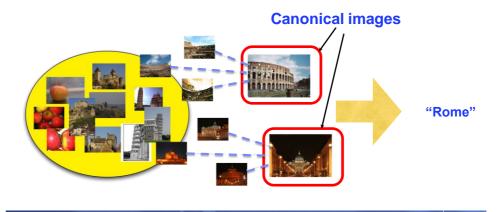
Image Pairwise Image Similarity with MapReduce

- Goal Speeding up image pairwise cosine similarity calculation by MapReduce (Hadoop) over large-scale images, represented by large VWs
- Constructing similarity "hyperlinks" in image collections for visualization and improving search quality; offline computation

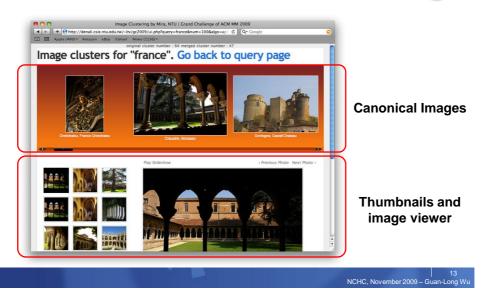

Cloud computing

- Leveraging MapReduce framework to scale up graph construction
- Computing huge image graph on a 18-node Hadoop cluster

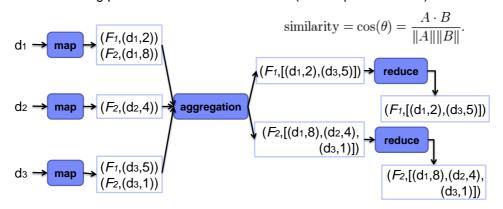
dataset	Single machine	Hadoop Platform
Flickr11k	1.6hrs	83 secs
Flickr550k	unknown	42 mins

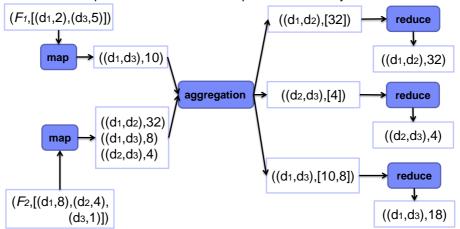

Offline clustering

 Clustering and canonical (representative) image selection by Hadoop-based Affinity Propagation


On-the-fly image search result clustering

 Real-time image search result clustering by pulling from precomputed clusters

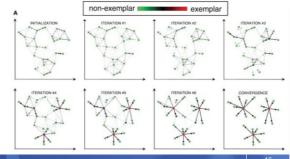

Demo!


Image Pairwise Image Similarity with MapReduce

Indexing phase: vector → inverted index (utilize sparse vectors)

Image Pairwise Image Similarity with MapReduce

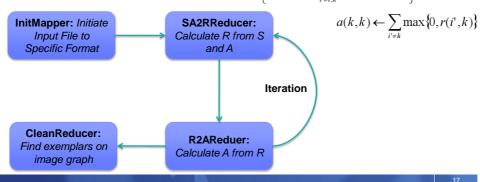
Calculation phase: inverted index → pairwise similarity


NCHC, November 2009 – Guan-Long Wu

Affinity propagation

[Frey et al., Science, 07]

- Data points can be exemplar (cluster center) or non-examplar (other data points).
- Message is passed between exemplar (centroid) and non-exemplar data points.


The total number of clusters will be automatically found by the algorithm.

Hadoop Implementation of Affinity Propagation

[Wang et al. ICHL 2008]

- S: similarity s(i, k)
- R: responsibility r(i, k) $r(i,k) \leftarrow s(i,k) \max_{k' \neq k} \left\{ a(i,k') + s(i,k') \right\}$
- A: Availability a(i, k) $a(i,k) \leftarrow \min \left\{ 0, r(k,k) + \sum_{i' \neq i,k} \max \left\{ 0, r(i',k) \right\} \right\}$

17 ICHC, November 2009 – Guan-Long W

Comparing with previous approaches

	Response Time	Feature	Scalability
SRC-based[1]	Fast	Textural only	No
Online- clustering[2]	Slow	Visual only	No
Our approach[3]	Faster	Textural and Visual	Yes

- [1] Feng Jing et al., IGroup: web image search results clustering, ACM MM 2006
- [2] Reinier H. van Leuken et al., Visual diversification of image search results, WWW 2009
- [3] Hsieh et al., Canonical Image Selection and Efficient Image Graph Construction for Large-Scale Flickr Photos, ACM MM 2009

Conclusions

- The proposed system can organizing image search results in semantic clusters at query time.
- The efficiency is achieved with the help of offline-computed image context graphs by distributed computing methods.

| 19 CHC, November 2009 – Guan-Long Wu

Acknowledgements

 National Center for High-Performance Computing (NCHC), Taiwan, for the Hadoop platform and technical supports in cloud computing