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Parallel Processing Platforms

Single-processor computers

Vector processor, superscalar, …

Multi-processor computers

SMP, NUMA, …

Multi-computer systems

Cluster, grid, …



Job Types

Serial

Parallel 

Interactive

batch



Resource Sharing Modes

dedicated mode

space sharing

time sharing



Different Performance Requirements

High performance

High throughput



Benefits of Load sharing with Cloud 
Computing



Resource Sharing Experiments

No sharing

Fully sharing resources (single global job 
queue)

Sharing idle resources only



Environment

 Cluster 1 Cluster 2 
CPU number 128 128 
Job number 5000 5000 
Workload input SDSC IBM SP2 SDSC IBM SP2 

 



No Sharing

 Cluster 1 Cluster 2 
Average waiting time(sec.) 3862 8735.94 
Resource utilization 66.73% 78.97% 
System completion time(sec.) 5222857 4633183 

 



Fully Sharing Resources

 Cluster 1 Cluster 2 
Average waiting time(sec.) 1500.67 2051.5 
Resource utilization 69.18% 69.18% 
System completion time(sec.) 5163515 5163515 

 



Sharing Idle Resources Only

 Cluster 1 Cluster 2 
Average waiting time(sec.) 2655.86 3140.69 
Resource utilization 68.6% 69.8% 
System completion time(sec.) 5160782 5163515 
Remote jobs 607 819 

 



How to Protect Short Jobs From Long 
Waiting Time? 



Equal Partition
A whole cluster

Total Long Medium Short

Average waiting time(s) 2.20054e+07 1.11542e+07 2.53849e+07 2.9477e+07

Maximum waiting time(s) 46830315 46320104 46830315 46824312

System efficiency 99.6707

Total system time(s) 63637413

Partitioned into three spools

Total Long Medium Short

Average waiting time(s) 1.83969e+07 3.83782e+07 1.67545e+07 58060.4

Maximum waiting time(s) 100500952 100500952 44024989 258799

System efficiency 97.2949 91.0358 81.2617

Total system time(s) 119547002 119547002 63636473 19736781



Adaptive Partition
A whole cluster

Total Long Medium Short

Average waiting time(s) 2.03912e+07 2.74461e+07 1.4607e+07 730347

Maximum waiting time(s) 57722550 57722550 57549124 18357958

System efficiency 99.52%

Total system time(s) 77289484

Partitioned into three spools

Total Long Medium Short

Average waiting time(s) 2.29003e+07 3.33406e+07 1.34124e+07 930.659

Maximum waiting time(s) 76675196 76675196 34660733 16858

System efficiency 79.87% 96.31% 51.99% 3.21%

Total system time(s) 96304563



Adaptive Partition with Moldable Property
A whole cluster

Total Long Medium Short

Average waiting time(s) 1.27663e+07 2.81429e+07 9.58302e+06 573098

Maximum waiting time(s) 47929451 47929451 43425355 9778758

System efficiency 98.62%

Total system time(s) 64314336

Partitioned into three spools

Total Long Medium Short

Average waiting time(s) 2.25935e+07 2.30207e+07 2.21317e+07 2.26282e+07

Maximum waiting time(s) 49834919 49834919 46159089 47243432

System efficiency 91.34% 93.04% 90.54% 91.46%

Total system time(s) 69442636



Moldable Jobs



Effects of Parallelism Limit
 Limit=32 

with 100% 

efficiency 

Limit=96 

with 100% 

efficiency 

Limit=32 

with 90% 

efficiency 

Limit=96 

with 90% 

efficiency 

Average 

waiting 

time(sec.) 

6.89629e+06 7.17462e+06 8.14743e+06 1.19398e+07 

Maximum 

waiting 

time(sec.) 

21652629 23674586 24806444 29343502 

System 

efficiency 

99.58% 95.08% 99.57% 94.03% 

Total 

system 

time(sec.) 

33671055 35264343 36825171 48936949 

 



Reasonable Waiting Time



Reasonable Waiting Time

The waiting time encountered by a job 
is reasonable compared to its execution 
time. 



Waiting Ratio

The ratio of a job’s waiting time to its 
execution time is a good indicator to tell 
if the job’s waiting time is reasonable. 



An Example
Assume job B arrives after job A by 10 
minutes and at first both jobs have to wait in 
a queue because of unavailable resources. 
Assume jobs A and B request for the same 
amount of processors, but job A requires 
much longer execution time than job B, e.g.
1000 minutes to 10 minutes. If some 
resources become available in 10 minutes 
after job B arrives, but only enough for just 
one job, which job should be set to run first? 



Different Schedules 

First-come first-served (FCFS)

Job A will be executed first, leading to 
waiting times of 20 and 1010 minutes, 
waiting ratios of 0.02 and 101 for jobs A 
and B, respectively.

Let job B run first

Waiting time of 30 and 10 minutes, waiting 
ratios of 0.03 and 1 for jobs A and B, 
respectively.



Single-Processor Computer
Since jobs have to be processed 
sequentially, minimum average waiting 
time implies least average waiting ratio. 

A schedule leading to least average 
waiting ratio can be found through 
solving the minimum average waiting 
time problem.

It can be solved optimally by the 
shortest-job-first greedy algorithm.  



Parallel Computer

The situation is more complicated.

Minimum average waiting time does not 
guarantee the least average waiting 
ratio. 



Job 2 Job 2 Job 2 Job 2 
(10 seconds)(10 seconds)(10 seconds)(10 seconds)

Job 1 Job 1 Job 1 Job 1 
(1000 seconds)(1000 seconds)(1000 seconds)(1000 seconds)

Second 0Second 0Second 0Second 0

Second 10Second 10Second 10Second 10

Second 20Second 20Second 20Second 20

Second 1000Second 1000Second 1000Second 1000

Processor 1Processor 1Processor 1Processor 1 Processor 2Processor 2Processor 2Processor 2 Processor 1Processor 1Processor 1Processor 1 Processor 2Processor 2Processor 2Processor 2

Job 2 Job 2 Job 2 Job 2 
(10 seconds)(10 seconds)(10 seconds)(10 seconds)

Job 1 Job 1 Job 1 Job 1 
(1000 seconds)(1000 seconds)(1000 seconds)(1000 seconds)

Second 1010Second 1010Second 1010Second 1010

Second 10Second 10Second 10Second 10

Second 0Second 0Second 0Second 0

(a)(a)(a)(a) (b)(b)(b)(b)



Case (a) Case (b)

Waiting ratio Job 1 Job 2 Average Job 1 Job 2 Average

0 1 0.5 0.01 0 0.005



Different Scheduling and Allocation 
Policies 

Multi-queue, multi-pool
Multi-queue, one-pool
Scan 
queue priority 

One-queue, one-pool
First-come, first-served (FCFS)
Largest-waiting-ratio-first 
Shortest-job-first 



Characteristics of Workload Log on 
SDSC’s SP2

Number 
of jobs

Maximum 
execution 
time (sec.)

Average 
execution 
time (sec.)

Maximum 
number of 
processors 

per job

Average 
number of 
processors 

per job

Group 1 4053 21922 267.13 8 3

Group 2 6795 64411 6746.27 128 16

Group 3 26067 118561 5657.81 128 12

Group 4 19398 64817 5935.92 128 6

Group 5 177 42262 462.46 50 4

Total 56490



Configuration of processor pools 
for the simulations

Number of processors

One-queue 
methods

442

Multi-queue 
methods

group 1 group 2 group 3 group 4 group 5

8 128 128 128 50



Performance results for the 442-node 
configuration

Average 
queue 
length

Average waiting ratio

total group 1 group 2 group 3 group 4 group 5

Multi-
queue

Multi-pool 4.75 21.46 3.67 14.91 37.38 6.27 0

Scan 0.21 0.18 0.03 0.78 0.15 0.05 0

Queue priority 0.22 0.25 0.03 1.27 0.13 0.11 0

One-
queue

FCFS 0.24 0.37 0.67 1.09 0.22 0.26 0

Largest-waiting-ratio-
first

0.21 0.09 0.15 0.23 0.08 0.03 0

Shortest-job-first 0.19 0.04 0.03 0.11 0.06 0.01 0



An example comparing shortest-job-
first and largest-waiting-ratio-first
Assume job 1 arrives at second zero 
and job 2 at second 10, requiring 1000 
and 10 seconds for execution, 
respectively. Further, assume both 
request the same amount of 
processors. If at second zero the 
resources are not available and at 
second 10 the resources become 
available but only enough for one job. 



Arrival 
time (sec.)

Execution 
time (sec.)

Waiting 
ratios at 

second 10

Final waiting 
ratios resulting 
from shortest-

job-first

Final waiting ratios 
resulting from largest-

waiting-ratio-first

Job 1 0 1000 0.01 0.02 0.01

Job 2 10 10 0 0 100

Average 0.01 50.005

One thing to be noted is that the shortest-job-first method 
has a chance of suffering from the starvation problem. 



Evaluation of Non-FCFS Policies for Variable 

Partitioning Based Job Scheduling



Background

Variable Partitioning Based Job 
Scheduling

FCFS

fragmentation

Backfilling

Estimation of execution time



Non-FCFS Policies

Backfilling
Conservative

Aggressive (EASY)

First available
Smallest first
Largest first



Simulation Configuration
Characteristics of the workload log on SDSC’s SP2

Number 
of jobs

Maximum execution 
time (sec.)

Average 
execution time 

(sec.)

Maximum 
number of 
processors 

per job

Average 
number of 
processors 

per job

Queue 1 4053 21922 267.13 8 3

Queue 2 6795 64411 6746.27 128 16

Queue 3 26067 118561 5657.81 128 12

Queue 4 19398 64817 5935.92 128 6

Queue 5 177 42262 462.46 50 4

Total 56490



Average queue lengths of workloads with 

different load factor values

FCFS First Available Smallest First Largest First Backfilling

Load 
Factor=1.0

0.41 0.33 0.33 0.35 0.35

1.5 0.73 0.54 0.52 0.55 0.57

2.0 1.35 0.85 0.80 0.91 0.89

2.5 3.41 1.64 1.52 1.75 1.92

3.0 9.46 3.30 2.71 3.96 4.69

4.0 208.33 37.59 30.14 71.55 54.26



Experimental Results
Average waiting time for different scheduling policies

FCFS
First Available Smallest First Largest First Backfilli ng

Load 
Factor=1.0

102.71 49.17 47.40 51.86 50.73

1.5 335.20 142.49 134.14 150.79 157.63

2.0 956.25 370.18 343.39 417.00 396.85

2.5 2815.84 938.98 833.67 1075.84 1082.79

3.0 8328.50 2280.82 1909.66 3059.78 2863.94

4.0 350945.34 51191.40 49653.18 95794.07 65481.10



Average waiting ratio for different scheduling policies

FCFS
First Available Smallest First Largest First Backfilli ng

Load 
Factor=1.0

0.77 0.17 0.15 0.21 0.16

1.5 1.89 0.51 0.40 0.53 0.53

2.0 4.08 0.86 0.79 1.15 0.85

2.5 10.38 1.68 1.29 2.03 1.75

3.0 26.92 3.15 2.19 5.27 3.22

4.0 840.93 62.63 21.99 153.65 50.72



Max waiting time for different scheduling policies

FCFS
First Available Smallest First Largest First Backfilli ng

Load 
Factor=1.0

34954 38814 38814 38814 34954

1.5 57605 61864 71250 61864 57520

2.0 80424 124123 174054 98256 80420

2.5 130643 478048 496785 427821 119601

3.0 211529 753552 959295 886564 191421

4.0 1955908 8876911 28375296 19951289 1103174



Max waiting ratio for different scheduling policies

FCFS
First Available Smallest First Largest First Backfilli ng

Load 
Factor=1.0

1377.84 560.22 272.17 560.22 249.19

1.5 1544.51 495.29 489.43 495.29 447.10

2.0 1640.79 589.54 589.54 589.54 541.85

2.5 1702.02 658.58 625.37 1006.77 602.65

3.0 1855.74 838.80 1780.38 2120.17 639.40

4.0 21015.27 10827.62 59653.56 19426.28 4426.99



Standard deviation of waiting time for different scheduling policies

FCFS
First Available Smallest First Largest First Backfilli ng

Load 
Factor=1.0

1170.82 794.97 789.76 818.80 792.75

1.5 2678.54 1573.64 1581.04 1651.43 1663.42

2.0 5454.09 3253.52 3130.04 3407.55 3097.36

2.5 10918.70 6206.17 6476.86 7011.77 5858.50

3.0 22453.32 12702.28 15343.95 16536.30 11125.66

4.0 615628.45 227038.52 714550.88 412196.85 182894.95



Standard deviation of waiting ratio for different scheduling policies

FCFS
First Available Smallest First Largest First Backfilli ng

Load 
Factor=1.0

15.80 3.87 3.03 4.93 2.91

1.5 24.03 7.18 6.47 7.79 7.08

2.0 35.83 11.03 10.41 14.06 10.14

2.5 63.02 15.78 13.25 19.86 15.19

3.0 118.83 23.28 22.82 42.61 21.24

4.0 2570.26 353.87 523.54 869.26 289.64



Detailed performance change comparisons of waiting times and ratios for non-FCFS policies

Load 
Factor=1.0

1.5 2.0 2.5 3.0 4.0

First Available less 681 1332 2928 6221 12499 29037

More 100 180 465 730 1085 1601

equal 55709 54978 53097 49539 42906 25852

Equal(nonzero) 803 1089 1413 1628 1907 963

Smallest First less 845 1622 3437 6762 13131 29318

More 163 276 585 1001 1546 1926

equal 55482 54592 52468 48727 41813 25246

Equal(nonzero) 576 703 784 816 814 357

Largest First less 693 1367 2943 6267 12595 28003

More 236 354 751 1183 1711 3011

equal 55561 54769 52796 49040 42184 25476

Equal(nonzero) 655 880 1112 1129 1185 587

Backfilling less 631 1254 2781 6165 11984 29516

More 0 0 0 0 0 0

equal 55859 55236 53709 50325 44506 26974

Equal(nonzero) 953 1347 2025 2414 3507 2085



Discussion
Non-FCFS methods can effectively improve 
the overall system utilization and 
performance. The simulation results indicate 
that the smallest first non-FCFS policy can 
reduce the waiting time to one-eighth and 
the waiting ratio to one-fortieth of the original 
values for the FCFS policy. 
As the worst case is concerned, the backfilling
policy is superior .
Setting threshold value may be able to 
improve the performance of the worst case 
for the non-FCFS policies.



Multi-cluster Computing Environment



Cross-Site Parallel Computation

Slowdown ratio = 

Reducing the frequency of cross-site parallel computation 
could improve system performance.
Both kinds of allocation methods for single-site and cross-
site parallel jobs could influence the frequency.

ingleSiteimeWithinSExecutionT

iesiteBoundarimeAcrossSExecutionT



Processor Allocation Methods for Reducing 
Cross-Site Parallel Computation
Allocating single-site parallel jobs

First fit

Best fit

Worst fit

Median fit

Random fit

Allocating cross-site parallel jobs
Fixed Order

Larger first

Smaller first



Configuration of Multi-cluster Environment
The processors on all clusters run at the same speed.

total cluster 1 cluster 2 cluster 3 cluster 4 cluster 5

Number of 
processors

442 8 128 128 128 50



Average waiting time for different slowdown ratios (sec.)

Slowdown ratio First Fit Median Fit Random Fit Best Fit Worst Fit

1 50.36 50.36 50.36 50.36 50.36

2 61.71 65.08 80.10 60.48 93.93

4 117.57 166.13 92.48 64.05 530.58

5 200.71 959.88 133.83 99.44 2219.90

Average waiting ratio for different slowdown ratios

Slowdown 
ratio

First Fit Median Fit Random Fit Best Fit Worst Fit

1 0.37 0.37 0.37 0.37 0.37

2 0.47 0.50 0.65 0.47 0.76

4 0.90 1.28 0.86 0.51 5.06

5 1.88 10.11 1.14 0.75 23.11



Average waiting time for different heuristic methods (sec.)

Slowdown 
ratio

Best Fit with Fixed 
Order

Best Fit with Smaller 
First

Best Fit with Larger 
First

1 50.36 50.36 50.36

2 60.48 60.13 60.23

4 64.05 64.07 63.71

5 99.44 176.57 66.12

Average waiting ratio for different heuristic methods

Slowdown 
ratio

Best Fit with Fixed 
Order

Best Fit with Smaller 
First

Best Fit with Larger 
First

1 0.37 0.37 0.37

2 0.47 0.47 0.47

4 0.51 0.51 0.51

5 0.75 1.61 0.53



An Integrated Approach

The previous single-pool centralized queue method.

FCFS for job scheduling without special 
processor allocation methods for reducing 
cross-site parallel computation.

The proposed integrated approach

Smallest first policy for job scheduling and the 
best-fit with larger first policy for processor 
allocation.



Slowdown ratio Average waiting time (sec.) Average waiting ratio

Single-pool 
centralized queue

The integrated 
approach

Single-pool 
centralized queue

The integrated 
approach

5 200.71 28.54 1.88 0.08

4 117.57 23.68 0.90 0.07

2 61.71 23.30 0.47 0.07

no slowdown 50.36 22.18 0.37 0.06



Adaptive Policy in Heterogeneous 
Multi-cluster Environment

Single-cluster allocation

dynamically changes between the best-fit
and the fastest-one policies 

Multi-cluster allocation







Searching for Better Load Sharing 
Methods in Multi-Cluster 

Environment



Load Sharing Policies

Independent clusters 
Forwarding to no-need-to-wait site 
Forwarding to shortest-queue site
Forwarding to least-load site 

Multi-pool centralized queue 
Single-pool centralized queue 

Slowdown ratio

One big cluster 

clusterinprocessorsofNumber

mparallelisiJobruntimeiJob
i

____

)).().((∑ ×

ingleSiteimeWithinSExecutionT

iesiteBoundarimeAcrossSExecutionT



Two-Level Scheduling

Empty queue only 

Shortest queue first

Least load first 

Forwarding to shortest-queue site with two local 
queues



Characteristics of Workload Log on 
SDSC’s SP2

Number 
of jobs

Maximum 
execution time (sec.)

Average 
execution time 

(sec.)

Maximum 
number of 

processors per 
job

Average 
number of 

processors per 
job

Queue 1 4053 21922 267.13 8 3

Queue 2 6795 64411 6746.27 128 16

Queue 3 26067 118561 5657.81 128 12

Queue 4 19398 64817 5935.92 128 6

Queue 5 177 42262 462.46 50 4

Total 56490



Configuration of the Computing Grid

Total Site 1 Site 2 site3 Site 4 Site 5

Number of 
processors

442 8 128 128 128 50



Performance Evaluation of Load Sharing Policies
Load sharing methods Average 

waiting 
time(sec.)

Standard 
deviation

Average 
waiting 

ratio

Standard 
deviation

Independent clusters 2772.63 10797.80 21.46 148.07

Local queue based methods

Forwarding to no-need-to-wait site 111.08 1658.17 0.51 8.76

Forwarding to shortest-queue site 91.80 1560.22 0.41 15.59

Forwarding to least-load site 86.28 1477.90 0.30 9.32

Centralized queue based methods

Multi-pool centralized queue 127.64 1487.69 1.03 20.53

Single-pool centralized queue
(slowdown ratio: 6)

2184.36 17251.00 23.84 273.75

Single-pool centralized queue
(slowdown ratio: 5)

200.71 2845.86 1.88 37.81

Single-pool centralized queue
(slowdown ratio: 4)

117.57 1749.76 0.90 19.42

Single-pool centralized queue
(slowdown ratio: 2)

61.71 946.55 0.47 13.88



Single-pool centralized queue
(no slowdown)

50.36 774.95 0.37 11.00

One big cluster 50.36 774.95 0.37 11.00

Two-level scheduling

Empty-queue-only multi-pool grid 67.86 1239.00 0.22 6.34

Shortest-queue-first multi-pool grid 75.23 1361.69 0.23 5.14

Least-load-first multi-pool grid 73.22 1331.80 0.28 8.50

Methods with two local queues

Forwarding to shortest-queue site 94.51 1764.42 0.34 10.47

Forwarding to shortest-queue site 
(threshold=max. waiting time)

91.40 1647.28 0.34 10.46



Load sharing methods Maximum waiting time(sec.) Maximum waiting ratio

Independent clusters 144925 4420.26

Forwarding to no-need-to-wait site 63732 652.70

Forwarding to shortest-queue site 86421 2059.92

Forwarding to least-load site 63732 1141.42

Multi-pool centralized queue 34620 1329.44

Single-pool centralized queue
(slowdown ratio: 6)

323130 9808.96

Single-pool centralized queue
(slowdown ratio: 5)

99864 1879.77

Single-pool centralized queue
(slowdown ratio: 4)

78659 1336.05

Single-pool centralized queue
(slowdown ratio: 2)

33699 1307.00

Single-pool centralized queue
(no slowdown)

30579 1204.71



One big cluster 30579 1204.71

Empty-queue-only multi-pool grid 61017 887.49

Shortest-queue-first multi-pool grid 63732 336.95

Least-load-first multi-pool grid 63732 1412.74

Forwarding to shortest-queue site with 
two local queues

144957 1364.53

Forwarding to shortest-queue site with 
two local queues (threshold=max. 
waiting time)

105022 1364.53



Summary
Load sharing mechanisms can greatly improve the 
overall system performance.

More accurate estimation of workload in each site 
can improve performance of the local queue based 
methods.

Shorter waiting time do not necessarily deliver 
smaller waiting ratios   

Two-level scheduling methods lead to smaller 
waiting ratios than the one big cluster 



Performance Evaluation of 
Adaptive Processor Allocation 
Policies for Moldable Parallel 

Batch Jobs



Partition Specification

Fixed.

Variable.

Adaptive.

Dynamic.



Job Flexibility

Rigid.

Moldable.

Evolving.

Malleable.



Application Characteristics

Batch processing.

Moldable.



Processor Allocation Policies

Parallelism limit.

Adaptive processor allocation

No adaptive scaling.

Adaptive scaling down.

Adaptive scaling up and down.

Restricted scaling up and down.



SDSC’s SP2 Workload
Number of 

jobs
Maximum execution 

time (sec.)
Average 
execution 
time (sec.)

Maximum 
number of 
processors 

per job

Average 
number of 
processors 

per job

Queue 1 4053 21922 267.13 8 3

Queue 2 6795 64411 6746.27 128 16

Queue 3 26067 118561 5657.81 128 12

Queue 4 19398 64817 5935.92 128 6

Queue 5 177 42262 462.46 50 4

Total 56490



Original Workload
Parallelism 
limit

Performance 
metrics

No adaptive 
scaling

Adaptive 
scaling down

Adaptive 
scaling up and 
down

Restricted 
scaling up and 
down

96 Waiting time 34489 2666 11796 3034

Completion time 39972 17716 13191 17255

64 Waiting time 30751 2555 11739 3091

Completion time 36246 18058 13122 16629

32 Waiting time 13849 2546 9731 2939

Completion time 19915 17823 12499 15680

16 Waiting time 8857 2037 7410 2578

Completion time 16905 17044 12945 15678



Uniform Distribution
Parallelism 
limit

Performance 
metrics

No adaptive 
scaling

Adaptive 
scaling down

Adaptive 
scaling up and 
down

Restricted 
scaling up and 
down

96 Waiting time 29930 2286 4584 2302

Completion time 30501 4277 5123 4088

64 Waiting time 10792 2209 4638 2267

Completion time 11477 4316 5189 4097

32 Waiting time 5746 2167 4222 2180

Completion time 6914 4471 5325 4306

16 Waiting time 4114 2146 3683 2122

Completion time 6352 5119 5889 5053



Normal Distribution
Parallelism 
limit

Performance 
metrics

No adaptive 
scaling

Adaptive 
scaling down

Adaptive 
scaling up and 
down

Restricted 
scaling up and 
down

96 Waiting time 38358 3263 4848 3481

Completion time 38909 4843 5381 4773

64 Waiting time 8409 3390 4895 3291

Completion time 9028 5029 5440 4641

32 Waiting time 5024 3189 4764 3212

Completion time 6125 4882 5855 4816

16 Waiting time 4420 3519 4373 3520

Completion time 6606 5977 6557 5967



Summary
Evaluation of several adaptive processor 
allocation policies for moldable parallel 
batch jobs on space-sharing parallel 
computers. 

More than eight times of performance 
improvement is achievable.

(Restricted) Adaptive scaling up and down
policy delivers better performance.

Actual effects of adaptive processor 
allocation are very complicated and may 
depend on processor number distributions. 



Adaptive Processor Allocation in 
Heterogeneous Computational Grid



The Problem

How to handle the situation where a 
parallel job cannot fit in any single site 
in the grid environment.

Multi-site parallel execution

Adaptive processor allocation

Both approaches might incur extended 
execution time.



Adaptive Processor Allocation

Space sharing

Moldable jobs

Heterogeneous computational grid



SDSC’s SP2 Workload
Number of 

jobs
Maximum execution 

time (sec.)
Average 
execution 
time (sec.)

Maximum 
number of 
processors 

per job

Average 
number of 
processors 

per job

Queue 1 4053 21922 267.13 8 3

Queue 2 6795 64411 6746.27 128 16

Queue 3 26067 118561 5657.81 128 12

Queue 4 19398 64817 5935.92 128 6

Queue 5 177 42262 462.46 50 4

Total 56490



Configurable Parameters

Speed vector (sp1,sp2,sp3,sp4,sp5)

Load vector (ld1,ld2,ld3,ld4,ld5)

Scheduling policy

FCFS, SJF

Single-site allocation policy

Best-fit, fastest, adaptive

Threshold

power



Check if the waiting queue becomes empty 
after this job ’’’’ s allocation

Pick up the site with the largest free 
computing power Pick up the site whose free computing power is best close to the 

required computing power of the job
 

No

Yes

No

Check if the selected site’’’’ s 
free computing power 
exceeds the predefined 

threshold

Perform 
allocation 

Yes



4760
4780

4800
4820

4840
4860

4880

(sec.)

without adaptive

allocation

with adaptive

allocation

speed=(1,3,5,7,9) load=(6.7,6.7,6.7,6.7,6.7) power=0.5

average turnaround time



4600

4700

4800

4900

5000

5100

(sec.)

0 0.1 0.5 1

power

speed=(1,3,5,7,9) load=(6.7,6.7,6.7,6.7,6.7)

average turnaround time



Adaptive processor allocation with different 

power values under SDSC’s SP2 workload

4600

4700

4800

4900

5000

5100

(sec.)

0 0.1 0.5 1

power

speed=(1,3,5,7,9) load=(6.7,6.7,6.7,6.7,6.7)

average turnaround time



Adaptive processor allocation with different 

power values under LANL’s CM5 workload
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Comparison under SDSC’s SP2 workload and 

uniformly distributed slowdown values
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Comparison under SDSC’s SP2 workload and 

normally distributed slowdown values
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Thorough comparison under SDSC’s SP2 

workload
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Summary
heterogeneity presents a challenge for 
effectively arranging load sharing activities 
in a computational grid. 

adaptive processor allocation is capable of 
significantly improving the overall system 
performance in a heterogeneous 
computational grid environment. 



Job Scheduling in Heterogeneous 
Cloud



Load sharing performance in a 
homogeneous cloud (Best-fit)
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Load sharing performance in a 

heterogeneous cloud using best-fit policy
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Performance of best-fit policy with large 

speed difference among participating sites
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Performance of best-fit policy with small 

speed difference among participating sites
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Comparison of the fastest-one policy and 

the best-fit policy (I)
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Comparison of the fastest-one policy and 

the best-fit policy (II)
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Performance of the adaptive policy
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fair load sharing policy

Pick up the next job for allocation from waiting queue according to the specified Pick up the next job for allocation from waiting queue according to the specified Pick up the next job for allocation from waiting queue according to the specified Pick up the next job for allocation from waiting queue according to the specified 
job scheduling policy job scheduling policy job scheduling policy job scheduling policy ((((FCFS or SJFFCFS or SJFFCFS or SJFFCFS or SJF ))))

Check all the sites in the grid which meet the specified computing speed threshold to see if there exists at least a site with Check all the sites in the grid which meet the specified computing speed threshold to see if there exists at least a site with Check all the sites in the grid which meet the specified computing speed threshold to see if there exists at least a site with Check all the sites in the grid which meet the specified computing speed threshold to see if there exists at least a site with 
enough free processors for the job to start executionenough free processors for the job to start executionenough free processors for the job to start executionenough free processors for the job to start execution ....

 Check the job Check the job Check the job Check the job ’’’’s home site to see if it is possible to reclaim s home site to see if it is possible to reclaim s home site to see if it is possible to reclaim s home site to see if it is possible to reclaim 
enough free processors for this job by deleting some of the running enough free processors for this job by deleting some of the running enough free processors for this job by deleting some of the running enough free processors for this job by deleting some of the running 

remote jobsremote jobsremote jobsremote jobs ....

Choose a site for allocating the job according to the specified site selection Choose a site for allocating the job according to the specified site selection Choose a site for allocating the job according to the specified site selection Choose a site for allocating the job according to the specified site selection 
policy policy policy policy ((((bestbestbestbest----fitfitfitfit , , , , fastestfastestfastestfastest, , , , or adaptiveor adaptiveor adaptiveor adaptive ).).).).

NoNoNoNoYesYesYesYes

Allocate the job to the Allocate the job to the Allocate the job to the Allocate the job to the 
selected siteselected siteselected siteselected site

NoNoNoNoYesYesYesYes

Sort the running remote jobs in the reverse order of their start timeSort the running remote jobs in the reverse order of their start timeSort the running remote jobs in the reverse order of their start timeSort the running remote jobs in the reverse order of their start time . . . . ThenThenThenThen, , , , each time delete a running remote job and put it back to the front of each time delete a running remote job and put it back to the front of each time delete a running remote job and put it back to the front of each time delete a running remote job and put it back to the front of 
the waiting queuethe waiting queuethe waiting queuethe waiting queue . . . . Repeat this reclaiming process until the number of free processors is enough for the job to start executionRepeat this reclaiming process until the number of free processors is enough for the job to start executionRepeat this reclaiming process until the number of free processors is enough for the job to start executionRepeat this reclaiming process until the number of free processors is enough for the job to start execution . . . . Allocate the job Allocate the job Allocate the job Allocate the job 

to its home site for executionto its home site for executionto its home site for executionto its home site for execution . . . . 



Average job response times (sec.) for 

different load sharing policies
Entire 

grid
Site 1 Site 2 Site 3 Site 4 Site 5

Independent 
sites

9260 14216 10964 10199 6448 57

Ordinary load 
sharing 
policy

4135 191 4758 4799 3881 559

Fair load 
sharing 
policy

4152 193 4750 4798 3939 57



Adaptive Processor Allocation with 
Estimated Job Execution Time in 

Heterogeneous Cloud



Introduction

This part presents an approach, taking 
advantage of the estimated job execution 
time, to effectively allocating processors to 
jobs submitted to a heterogeneous cloud. 

Many parallel computer systems installed in 
computing centers worldwide, which adopts 
backfilling based job scheduling policies, require 
that users should provide estimated job execution 
time when submitting a job to the system. 



Introduction (Cont.)
The proposed adaptive processor allocation 
approach can effectively improve the overall 
system performance, in terms of jobs’
average turnaround time, from two to four 
times, compared to currently used methods. 



Introduction (Cont.)
A cloud usually consists of several parallel or 
cluster computers located at different sites.

Communications between processors within the 
same site are usually achieved through high-speed 
networking devices

Messages passed across different sites have to go 
through a much slower wide-area network or 
Internet.

A job allocated to a pool of processors within 
the same site can usually run faster than if it 
is assigned to processors across different 
sites.



Introduction (Cont.)
Processor allocation deals with the first job in 
the waiting queue. When the parallel job 
cannot fit into any single site in a 
heterogeneous cloud, the system, in general, 
may have the following choices:

simply keep the job waiting until a single site 
having enough free processors becomes available

allow the job to run across several sites 

for a moldable job the system can even run it with 
a less number of processors than originally 
specified.



Introduction (Cont.)
The adaptive processor allocation approach 
dynamically makes the best allocation 
decision among the above allocation choices.



The Cloud Model
There are several independent computing 
sites with their own local workload. The cloud 
integrates the sites and shares their incoming 
jobs. 
The nodes on each site run at the same speed and 
are linked with a fast interconnection network.

Each site adopts space-sharing and run the jobs in 
an exclusive fashion.

All computing nodes in the cloud are assumed to 
be binary compatible. The cloud is heterogeneous 
in the sense that nodes on different sites may 
differ in computing speed and different sites may 
have different numbers of nodes.



The Cloud Model (Cont.)
The parallel jobs in this model are assumed to be 
moldable. We also assume the ability of jobs to 
run in multi-site mode. 

We used SDSC’s SP2 workload logs as the 
input workload in the simulations. 

The log contains records collected from May 1998 
to April 2000. 



Number 
of jobs

Maximum 
execution time

Average 
execution 
time 

Maximum number 
of processors/job

Average 
number of 
processors/job

Queue 1 4053 21922 267.13 8 3

Queue 2 6795 64411 6746.27 128 16

Queue 3 26067 118561 5657.81 128 12

Queue 4 19398 64817 5935.92 128 6

Queue 5 177 42262 462.46 50 4

Total 56490



Configuration of the Cloud

total site 1 site 2 site 3 site 4 site 5

Number of 
processors

442 8 128 128 128 50



The Cloud Model (Cont.)

we define a speed vector, 
speed=(sp1,sp2,sp3,sp4,sp5), to 
describe the relative computing speeds 
of all the five sites in the cloud.

We also define a load vector, 
load=(ld1,ld2,ld3,ld4,ld5), which is used to 
derive different loading levels from the 
original workload data by multiplying the load 
value ldi to the execution times of all jobs at 
site i.



Current Allocation Practices
Multi-pool configuration

Each job must be allocated to exactly one site. If a 
job cannot fit into any single site in the cloud, it 
would have to wait.

Multi-site parallel execution. 

Run a parallel job across several sites if there is no 
single site having enough free processors. 

Moldable processor allocation.

Instead of keeping the job waiting in queue, the 
system automatically scales the job’s parallelism 
down to use exactly the number of free 
processors. 



Current Allocation Practices (Cont.)
However, none of the above three 
approaches can consistently deliver the best 
performance under different workloads or 
system configurations.



Table 3. Performance under speed vector (1,5,4,5,2) and load vector (1,1,1,1,1)

Average turnaround time (sec.)
Average queue 

length

Multi-pool 1102 0.06

Multi-site
(slowdown=1.5)

1103 0.05

Multi-site
(slowdown=2.0)

1103 0.05

Multi-site
(slowdown=2.5)

1104 0.05

Multi-site
(slowdown=3.0)

1105 0.05

Moldable 1109 0.03



Table 4. Performance under speed vector (4,1,2,1,5) and load vector (1,1,1,1,1)

Average turnaround 
time (sec.)

Average 
queue length

Multi-pool 1576 0.16

Multi-site
(slowdown=1.5)

1560 0.13

Multi-site
(slowdown=2.0)

1565 0.13

Multi-site
(slowdown=2.5)

1571 0.13



Table 5. Performance under speed vector (1,5,4,5,2) and load vector (5,5,5,5,5)

Average turnaround 
time (sec.)

Average queue 
length

Multi-pool 5708 0.44

Multi-site
(slowdown=1.5)

5748 0.40

Multi-site
(slowdown=2.0)

5827 0.44

Multi-site
(slowdown=2.5)

5895 0.45

Multi-site
(slowdown=3.0)

6088 0.50

Moldable 5799 0.18



Table 6. Performance under speed vector (4,1,2,1,5) and load vector (5,5,5,5,5)

Average turnaround 
time (sec.)

Average queue 
length

Multi-pool 33432 19.58

Multi-site
(slowdown=1.5)

1419841 594

Multi-site
(slowdown=2.0)

3705479 1369

Multi-site
(slowdown=2.5)

10036993 5731

Multi-site
(slowdown=3.0)

14508657 7307

Moldable 13525 0.63



Adaptive Processor Allocation
Variables: 

T0, T1, T2, T3: execution times for processor allocation policies; 
S0, S1, S2, S3: set of sites chosen by processor allocation policies;

While (job queue is not empty)
{
Pick up the first job from the job queue;
If (any cluster being able to accommodate the job)
{
Apply the fastest-one policy to compute and set
T0 = the execution time to be taken
S0 = the target site
}



Else
{
T1 = Min{Ti}, where Ti is (the estimated waiting time + the   

estimated single-site runtime) for site i in the grid sites 
S1 = the site taking the total turnaround time T1 

if (total free processors in the grid is enough for multi-site allocation)
{     
T2 = the estimated runtime of multi-site allocation 
S2 = the set of sites for the allocation
}
else
T2 = ∞;



if (total number of free processors in the grid is not zero)
{              
T3 = Min{Tj}, where Tj is the estimated runtime when 

scaling down to site j with non-zero processors
S3 = the site taking execution time T3 
}

else
T3 = ∞

}
if (T0 is the shortest time)
Run the job on site S0;
else if (T1 is the shortest time)

Keep the job waiting in queue until site S1 have enough processors; 
else if (T2 is the shortest time)

Apply multi-site parallel execution using the sites in S2;
else
Scale down parallelism for immediate execution on site S3;

} 



Table 7. Performance under speed vector (1,5,4,5,2) and load vector(1,1,1,1,1)

Average turnaround time (sec.)

Multi-pool 1102

Multi-site
(slowdown=1.5)

1103

Moldable 1109

Proposed approach
(slowdown=1.5)

254



Table 8. Performance under speed vector (4,1,2,1,5) and load vector(1,1,1,1,1)

Average turnaround time (sec.)

Multi-pool 1576

Multi-site
(slowdown=1.5)

1560

Moldable 1547

Proposed approach
(slowdown=1.5)

477



Table 9. Performance under speed vector (1,5,4,5,2) and load vector(5,5,5,5,5)

Average turnaround time (sec.)

Multi-pool 5708

Multi-site
(slowdown=1.5)

5748

Moldable 5799

Proposed approach
(slowdown=1.5)

1735



Table 10. Performance under speed vector (4,1,2,1,5) and load vector(5,5,5,5,5)

Average turnaround time (sec.)

Multi-pool 33432

Multi-site
(slowdown=1.5)

1419841

Moldable 13525

Proposed approach
(slowdown=1.5)

6162



Summary
This part investigates the processor allocation 
issue in heterogeneous cloud environments. 
An adaptive processor allocation approach is 
proposed, which takes advantage of the 
estimated job execution time commonly 
required by many parallel systems in 
computing centers.
The proposed approach can dynamically 
make the best allocation decision among 
several allocation choices. 
The simulation results indicate that the 
proposed approach can consistently 
outperform the three current practices under 
different workload and system configurations. 



Summary (Cont.)
The adaptive approach effectively improves 
the overall system performance, in terms of 
jobs’ average turnaround time, from two to 
four times under different conditions. 



On Effects of Resource Fragmentation 
on Job Scheduling Performance in a 

Multi-Cluster Cloud



Introduction

This part presents the studies on analysis of 
job scheduling performance in a multi-cluster 
cloud from the perspective of resource 
fragmentation. 

Two parts of job scheduling will impact on 
resource fragmentation: 
job selection

site selection.

A series of simulations have been conducted 
to investigate the effects of resource 
fragmentation in terms of average waiting 
time of all jobs. 



Resource Fragmentation Issues
Resource utilization has a significant impact 
on system performance and thus has been a 
research topic in many kinds of computer 
systems. 

For example, dynamic memory allocation methods 
were developed to alleviate external 
fragmentation in memory space. 

Reduced external fragmentation implies more 
efficient resource utilization and can lead to 
improved system performance because of being 
able to support more applications simultaneously. 



Resource Fragmentation Issues (Cont.)

On parallel or cluster computer systems, 
backfilling scheduling methods have been 
proposed to improve jobs’ turnaround time 
through improving resource utilization. 

This part discusses the resource 
fragmentation issue in a cloud, consisting of 
multiple clusters or parallel computers, and 
investigate its effects on job scheduling 
performance. 



An Example of  Resource Fragmentation

Site 1 
4 free processors 

Site 2
2 free processors 

Site 3
4 free processors 

Site 4
6 free processors 

An incoming job 

requir ing 10 
processors



Resource Fragmentation Issues (Cont.)

On parallel or cluster computer systems, job 
scheduling mainly determines the sequence 
of starting execution for the jobs waiting in 
the queue
called job selection in the following. 

Since a cloud is composed of several sites 
and intends to allocate a parallel job onto a 
single site, job scheduling in cloud has to 
include a second step after job selection. 
The second step, called site selection in the 
following, chooses an appropriate site with 
enough free processors for allocating the selected 
job in the job selection step. 



Resource Fragmentation Issues (Cont.)
The following studies the resource 
fragmentation effects under different job 
selection and site selection methods 



Simulation Model

Our simulation studies were based on publicly 
downloadable workload traces. 

We used the SDSC’s SP2 workload logs as the 
input workload in the simulations. 

73496 job records collected on a 128-node IBM 

SP2 machine from May 1998 to April 2000

56490 job records are used in the simulations 
after excluding some problematic records based 

on the completed field in the log.



Number 
of jobs

Maximum 
execution time

Average 
execution 
time 

Maximum number 
of processors/job

Average 
number of 
processors/job

Queue 1 4053 21922 267.13 8 3

Queue 2 6795 64411 6746.27 128 16

Queue 3 26067 118561 5657.81 128 12

Queue 4 19398 64817 5935.92 128 6

Queue 5 177 42262 462.46 50 4

Total 56490

Job Characteristics in SDSC’s SP2 Log



Configuration of the Cloud

total site 1 site 2 site 3 site 4 site 5

Number of 
processors

442 8 128 128 128 50

We define a load vector, 
load=(ld1,ld2,ld3,ld4,ld5), to study different 
workload conditions from the original 
workload data by multiplying the load value 
ldi to the execution times of all jobs at site i.



Site Selection Methods
First-fit

Best-fit

Worst-fit

Median-fit

Random-fit



First Fit



Best Fit



Worst Fit



Median Fit



Random Fit



Performance under FCFS Scheduling



Resource Fragmentation Counts

These results indicate that resource fragmentation 
is the main cause of the performance difference 
among different site allocation methods. 



Job Scheduling Methods
First-Come, First-Served (FCFS) 

Smallest job first (SJF) 

Largest job first (LJF) 

Shortest runtime first (SRF) 



Performance of Job Scheduling Methods



Resource Fragmentation Counts



CO-CONSIDERATION OF JOB 

SELECTION AND SITE SELECTION

First-fit job first (FFJF) 

Best-fit job first (BFJF) 



Performance Results



Resource Fragmentation Counts



Average Queue Length



Discussions

Methods co-considering job selection and site 
selection in one single step seem bringing no 
significant improvement. 

resource fragmentation count is not 
necessarily proportional to the average 

waiting time for job selection methods.

resource fragmentation may not be the sole effect 
on job selection performance. 



Discussions (Cont.)

In addition to resource fragmentation, 
keeping as many jobs running as possible 
may be another important performance factor 
when average waiting time is concerned. 

More jobs running implies less jobs waiting queue. 

As job selection performance is concerned 
average queue length may have stronger 
effects than resource fragmentation. 



Summary
This paper presents the work in analyzing the 
underlying causes that lead to the 
performance difference between different job 
scheduling methods in multi-cluster cloud 
environments. 
The performance results in the experiments 
indicate that resource fragmentation plays an 
important role on job scheduling 
performance. 



Summary (Cont.)
Good job selection and site selection 
mechanisms are proposed to form an 
effective job scheduling method which could 
reduce resource fragmentation and thus 
improve system performance.

Achieving more than five times performance 
improvement compared to primitive job scheduling 
methods. 



Scheduling Task-Parallel Jobs in 
Parallel and Distributed Systems



Task Graph (DAG)
A task graph is a directed acyclic graph 
G=(V,E,w,c) representing a job J. 

The nodes in V represent the tasks of J.

The edges in E representing the 
communications between the tasks.

The positive weight w(n) associated with node 
n represents its computation cost.

The nonnegative weight c(eij) associated with 
edge eij represents its communication cost.



Task Graph
A task graph can be used to represent the 
structure of a program, where a task is a 
statement, or the structure of a large job, 
where each task may itself be the execution 
of a specific program.
Limitations

It does not provide any mechanism to 
efficiently represent an iterative computation.
It does not exhibit conditional execution; that 
is, there is no branching.



Task Graph
Exercise:

Construct a task graph for the code below. Each line 
shall be represented by one task, named by its line 
number, and the costs shall be assumed as follows:

• Computation. Assignment alone: 1 unit; add/subtract 
operation: 2 units; multiply operation: 3 units; divide 
operation: 4 units.

• Communication. Communicating a variable with a small letter 
and with a capital letter costs 1 unit and 2 units, respectively.

1:  a = 56
2:  b = a * 10 + 2
3:  C = (b – 2) / 3
4:  D = 91.125
5:  E = D * a
6:  F = D * b + 1
7:  g = 11 + a
8:  H = (E + F) * g



Computer Representation of Graphs
There are two standard ways to represent a graph 
G = (V,E):

as a collection of adjacency lists
as an adjacency matrix

Adjacency list representation
A graph can be represented as a array of |V| adjacency 
lists, one for each vertex in V. the adjacency list 
belonging to vertex u contains pointers to all vertex v 
that are adjacent to u.
It has the disadvantage that there is no quicker way to 
determine of an edge euv is part of a graph G than to 
search in u’s adjacency list.
suitable for sparse graph.



Computer Representation of Graphs
Adjacency matrix representation

A graph is represented by a |V|×|V| matrix A. each 
element aij of the matrix A has one of two possible 
values: 1 if the edge eij exists and 0 otherwise.

It uses more memory space than adjacency list 
representation.

suitable for dense graphs, or when the fast 
determination of the existence of an edge is crucial.



Computer Representation of Graphs
Exercise:

Give an adjacency matrix representation and an 
adjacency list representation of the task graph for the 
previous exercise.



Topological Order
A topological order of a directed acyclic graph 
G=(P,E) is a linear ordering of all its vertices such 
that if E contains an edge euv, then u appears 
before v in the ordering.

A directed graph G=(P,E) is acyclic if and only if 
there exists a topological order of its vertices.

Algorithm Topological-Sort(G)
Execute DFS(G), Depth First Search, with the following addition:

Insert each vertex of G onto the front of a list L as soon as it is marked finished

Return L



Topological Order
Algorithm DFS(G)

for each vertex v in G do
if v not discovered then

DFS-Visit(v)
end if

End for

Algorithm DFS-Visit(u)
for each adjacent vertex v of u do

if v not discovered then
Mark v as discovered
DFS-Visit(v)

end if
end for
Mark u as finished



Topological Order
Topological order of a task graph is useful when 
scheduling a task graph onto a single CPU, but is 
not enough when scheduling a task graph onto a 
parallel system.

Exercise:
Find a topological order for the task graph in the 
previous execrise.



Task Scheduling
Here, statictask scheduling is addressed. Static 
scheduling usually refers to the scheduling before 
job execution, as opposed to dynamicscheduling, 
where tasks are scheduled during job execution at 
runtime.

Static scheduling is suitable for compilers to 
schedule the machine instructions in a program 
into parallel execution since the computation and 
communication cost can be calculated. 



Task Scheduling
The scheduling problem was introduced as the 
spatial and temporal assignment of tasks to 
processors.
The spatial assignment, or mapping, is the 
allocation of tasks to the processors.

A processor allocation A of the task graph G = 
(V,E,w,c) on a finite set P of processors is the processor 
allocation function proc: V => P of the nodes of G to 
the processors of P.

The temporal assignment is the attribution of a 
start time to each task. However, it presupposes 
the allocation of the tasks to processors and 
therefore commonly both are defined by a 
schedule.



Task Scheduling
A schedule S of the task graph G = (V,E,w,c) on a 
finite set P of processors is the function pair 
(ts,proc), where

ts: is the start time function of the nodes in G.

proc: is the processor allocation of the nodes of G to the 
processors of P.



With Communication Costs
Target parallel system– classic model

A target parallel system P consists of a set of identical processors 
connected by a communication network.

Dedicated system. The parallel system is dedicated to the 
execution of the scheduled task graph. No other program or task is 
executed on the system while the scheduled task graph is executed.

Dedicated processor. A processor can execute only one task at a 
time and the execution is not preemptive.

Cost-free local communication. The cost of communication 
between tasks executed on the same processor is negligible and 
therefore considered zero.

Communication subsystem. Interprocessor communication is 
performed by a dedicated communication subsystem. The 
processors are not involved in communication.



With Communication Costs
Concurrent communication. Interprocessor communication in the 
system is performed concurrently; there is no contention for 
communication resources.

Fully connected. The communication network is fully connected.

Node finish time.
The finish time of a node is the node’s start time plus its execution 
time (computation cost).

tf(n) = ts(n) + w(n)

Edge finish time.
The time at which a communication arrives at the destination 
processor.

tf(eij, Psrc, Pdst) = tf(ni, Psrc) +
• 0            if Psrc = Pdst

• c(cij)    otherwise



With Communication Costs
Condition 1: exclusive processor allocation

proc(ni) = proc(nj) �
• ts(ni) < tf(ni) <= ts(nj) < tf(nj)

• or  ts(nj) < tf(nj) <= ts(ni) < tf(ni)

Condition 2: precedence constraint
ts(nj, P) >= tf(eij, proc(ni), P)

Feasible schedule
A schedule S is feasible if and only if all nodes n and 
edges e in the graph comply with conditions 1 and 2.



With Communication Costs
Data ready time

tdr(nj, P) = max {tf(eij, proc(ni), P)} for all e*j
Data ready time constraint

ts(n, P) >= tdr(n,P)

Processor finish time
tf(P) = max {tf(n)} for all n where proc(n) = P

Schedule length
sl(S) = max{tf(n)} for all n in G

Used processors
Q = ∪proc(n) for all n in G
For any schedule S, |Q| <= |P|

Sequential time
Seq(G) = Σw(n) for all n in G
G’s execution time on one processor only.



With Communication Costs
Exercise:

A schedule example for the task graph in the previous 
exercise.



Scheduling Complexity
Scheduling problem

Let G = (V,E,w,c) be a task graph and P a parallel 
system. The scheduling problem is to determine a 
feasible schedule S of minimal length sl for G on P.

The decision problem SCHED(G,P) associated 
with the scheduling problem is as follows.

Is there a schedule S for G on P with length sl(S) <= T

SCHED(G,P) is NP-complete, even when |P| >= 
|V|
sl(Sopt(P+1) <= sl(Sopt(P)) 

on systems with P processors, but may using less 
processors in the schedule



Without Communication Costs
Target parallel system – cost-free communication

A target parallel system Pc0 consists of a set of identical 
processors connected by a cost-free communication 
network.

Edge finish time
tf(eij,Psrc, Pdst) = tf(ni)

Data ready time
tdr(nj) = max {tf(ni)} for all ni connecting to nj

Exercise:
A schedule example for the task graph in exercise 1.



Scheduling Complexity
SCHED-C0(G,Pc0) is NP-complete.

While in general the scheduling problem without 
communication costs is NP-complete, it is 
solvable in polynomial time for an unlimited 
number of processors.

A simple algorithm to find an optimal schedule is 
based on two ideas:

Each node is assigned to a distinct processor.

Each node starts execution as soon as possible.



Scheduling Complexity
Optimal scheduling algorithm:

Insert all n in G in topological order into sequential list L

for each ni in L do

DRT = 0

for each nj belonging to pred(ni) do

DRT = max{DRT,tf(nj)}

end for

ts(ni) = DRT

tf(ni) = ts(ni) + w(ni)

proc(ni) = Pi

end for



Scheduling Complexity
sl(Sq+1

opt) <= sl(Sq
opt), schedules using exactly q+1 

or q processors.

The above relation is not valid when considering 
communication costs.

An example of chain structure can illustrate this.



Task Graph Properties
Path length, len(p)

The length of a path p in G is the sum of the weights of its nodes 
and edges.

Computation length, lenw(p)
The sum of the weights of the nodes in a path

Allocated path length, len(p,A)
The path length determined for a given processor allocation A.

Len(p) >= len(p,A) >= lenw(p)
Critical path

A critical path cp of a task graph G is a longest path in G.

The critical path gains its importance for scheduling from 
the fact that its length is a lower bound for the schedule 
length.

sl >= lenw(cpw)



Task Graph Properties
For cost-free communication and unlimited 
processors, sl(Sopt) = lenw(cpw)



Node Levels
Let G=(V,E,w,c) be a task graph and n belong to 
V.

Bottom level bl(n)of n is the length of the longest path 
starting with n.
A path starting with n of length bl(n) is called a bottom 
pathof n and denoted by pbl(n).
Top level tl(n)of n is the longest length path ending in 
n, excluding w(n).
A path ending in n of length tl(n) + w(n) is called a top 
pathof n and denoted by ptl(n).
Computation bottom level blw(n)
Computation top leveltlw(n)

pbl(n) ≠ pblw(n) and ptl(n) ≠ ptlw(n) 



Level Bounds on Start Time
Let S be a schedule for task graph G=(V,E,w,c) on 
system P. For each n belonging to V,

sl >= ts(n) + blw(n)

ts(n) >= tlw(n)

ptb(n) = ptl(n) ∪pbl(n)

len(ptb(n)) = tl(n) + bl(n)



Critical Path Length and Node Levels
Let G=(V,E,w,c) be a task graph. For any node 
ncp,i of a critical path cp

len(cp) = tl(ncp,i ) + bl(ncp,i )

bl(nsrc) = len(ptb(nsrc))

bl(ncp,1) = len(cp) >= bl(ni) for each ni in V
Consequently, a source node with the highest bottom 
level of all nodes is the first node ncp,1 of a critical path 
cp of G.



As-Soon/Late-as-Possible Start Times
ASAP(n) = tl(n)

ALAP(n) = len(cp) – bl(n)

ASAPw(n) = tlw(n)

ALAPw(n) =lenw(n) – blw(n)



Computing Levels and Critical Path

To compute node levels, the following recursive 
definition of the levels is convenient. For a task graph 
G=(V,E,w,c) and ni belonging to V,
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Computing Levels and Critical Path
Algorithm: compute bottom levels

Insert n of V in inverse topological order into sequential list L.

for each ni in L do

max �0; nblsucc(ni) �NULL

for each nj in succ(ni) do

if c(eij)+bl(nj) > max then

max � c(eij)+bl(nj); nblsucc(ni) � nj

end if

bl(ni) � w(ni) + max

end for

end for



Computing Levels and Critical Path
Algorithm: compute top levels

Insert n of V in topological order into sequential list L.

for each ni in L do

max �0; ntlpred(ni) �NULL

for each nj in pred(ni) do

if tl(n j)+w(nj)+c(eji) > max then

max � tl(nj)+w(nj)+c(eji) ; ntlpred(ni) � nj

end if

tl(ni) � max

end for

end for



Computing Levels and Critical Path
Observe that the top and bottom paths are also 
computed with the presented algorithms.
Moreover, a critical path and its length are also 
computed by the algorithm of computing bottom 
levels.

It suffices to store a node with the highest bottom level 
during the run of the algorithm.

The paths of node levels and the critical path are 
in general not unique.



Granularity
Task graph granularity

Let G=(V,E,w,c) be a task graph. G’s granularity is

A task graph is said to be coarse grainedif g(G) >= 1

Coarse granularity is a desirable property of a task graph.

One objective of task scheduling is always to minimize the 
cost of communication.

This is achieved by having as much local communication as possible.

Unfortunately, this objective conflicts with the other objective of 
scheduling, namely, the distribution of the tasks among the processors.

Grain
Let G=(V,E,w,c) be a task graph. The grain of node ni in V is
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Granularity
Task graph weak granularity

Let G=(V,E,w,c) be a task graph. G’s weak granularity is 

This definition of granularity is called weak granularity because  
g(G) <= gweak(G)
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Granularity and Critical Paths
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Relation between critical path and computation 
critical path

Let G=(V,E,w,c) be a task graph, cp its critical path, and 
cpw its computation critical path. The nodes of cp are 
denoted by Vcp, where nlast is the last node of cp, and its 
edges by Ecp. It holds that
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Granularity and Critical Paths
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Communication to Computation Ratio
The measure of granularity considers extreme values and 
consequently guarantees certain properties of a task graph. 
However, the general scheduling behavior of a task graph is 
not necessarily related to the granularity of the graph.

Let G=(V,E,w,c) be a task graph. G’s communication to 
computation ratio is

Usually, a task graph is said to have high, medium, and low 
communication for CCRs of about 10, 1, and 0.1, 
respectively.
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Exercise
For the task graph in exercise 1, determine the 
following:

1. Granularity g(G)

2. Weak granularity gweak(G)

3. Communication to computation ratio CCR(G)



Fundamental Heuristics for 
Scheduling Task-Parallel Jobs



Two Fundamental Heuristics

List scheduling

Clustering

These two heuristics are classes or categories 
rather than simple algorithms. Most of the 
algorithms that have been proposed for task 
scheduling fall into one of these two classes.



List Scheduling
In its simplest form, the first partof list scheduling 
sorts the nodes of the task graph to be scheduled 
according to a priority scheme, while respecting 
the precedence constraints of the nodes—that is, 
the resulting node list is in topological order.

In the second part, each node of the list is 
successively scheduled to a processor chosen for 
the node.

Usually, the chosen processor is the one that allows the 
earliest start time of the node.



List Scheduling
Algorithm: simple list scheduling—static priorities 
(G=(V,E,w,c), P)

1 Part:
Sort nodes in V into list L, according to priority scheme and 
precedence constraints.

2. Parts:
for each n in L do

Choose a processor in P for n
Schedule n on P

end for

Each node is only scheduled once, that is, the start time 
and the allocated processor are never changed in a latter 
step of the algorithm. The partial schedules must be 
feasible in order to achieve a feasible final schedule.



List Scheduling
Free node

Let G=(V,E,w,c) be a task graph, P a parallel system, 
and Scur a partial feasible schedule for a subset of nodes 
Vcur, included in V, on P. A node n in V is said to be 
free if n is not in Vcur and ance(n) is included in Vcur.

In list scheduling, every node to be scheduled is 
free, because the nodes are processed in 
precedence order. Hence, by definition, at the time 
a node is scheduled all ancestor nodes have 
already been processed.



List Scheduling
End technique

Let G=(V,E,w,c) be a task graph, P a parallel system, and 
Scur a partial feasible schedule for a subset of nodes Vcur, 
included in V, on P. The start time of the free node n in V, 
on a given processor P, is determined by

This determination of the start time is here called 
“end technique”, as node n is scheduled at the end of 
all other nodes scheduled on processor P.

)}(),,(max{),( PPnPn ttt fdrs
=



Start Time Minimization
Algorithm: schedule free node n on Earliest-Start-Time 
Processor
Require: n is a free node
tmin �infinity; Pmin� NULL
for each P in P do

if tmin > max{tdr(n,P), tf(P)} then
tmin � max{tdr(n,P), tf(P)}; Pmin � P

end if
end for
ts(n)�tmin; proc(n)�Pmin

In the literature, list scheduling usually implies the above 
start time minimization method.
An Example



Online Scheduling of Workflow 
Applications in Cloud 

Environment   



Introduction

Cloud environments are an important 
platform for running high-performance and 
distributed applications. Many large-scale 
scientific applications are usually constructed 
as workflows due to large amounts of 
interrelated computation and communication,

e.g., Montage and EMAN. 

Scheduling workflow applications in parallel 
systems is a great challenge.
It is an NP-complete problem. 



Introduction (Cont.)
Many heuristic methods have been proposed 
in the literature

Most of them deal with a single workflow at a 
time.

In recent years, there are several heuristic 
methods proposed to deal with concurrent 
workflows or online workflows
They do not work with workflows composed of 
data-parallel tasks. 

In the following, we present an online 
scheduling approach for mixed-parallel 
workflows in cloud environments.



Introduction (Cont.)

The proposed approach was evaluated with a 
series of simulation experiments.

We developed a simulator using discrete-event 
based techniques for experiments.

A workflow is represented by direct acyclic graph 
(DAG).

The cloud environment is assumed to consist of 
several dispersed clusters, each containing a 
specific amount of processors.

The results show that the proposed approach 
delivers good performance under various 
workloads. 



Related Work
In the past years, most works dealing with 
workflow scheduling were restricted to single 
workflow application.
Recently, Zhao et al. in their work envisaged 
a scenario that need to schedule multiple 
workflow applications at the same time. They 
proposed two approaches: 
The composition approach merges multiple 
workflows into a single workflow first. Then, list 
scheduling heuristic methods, such as HEFT, can 
be used to schedule the merged workflow.  
The main idea of the fairness approach is that 
when a task completes, it will re-calculate the 
slowdown value of each workflow against other 
workflows and make a decision on which workflow 
should be considered next.



Related Work (Cont.)
The composition and the fairness approaches 
are static algorithms and not feasible to deal 
with online workflow applications, 
i.e. multiple workflows come at different time 
instants.

Later, RANK_HYBD is proposed to deal with 
online workflow applications submitted by 
different users at different times. The task 
scheduling approach of RANK_HYBD sorts the 
tasks in waiting queue using the following 
rules repeatedly.



Related Work (Cont.)
If tasks in waiting queue come from multiple 
workflows, the tasks are sorted in ascending order 
of their rank value (ranku) where ranku has the 
same definition as in HEFT;

If all tasks belong to the same workflow, the tasks 
are sorted in descending order of their rank value 
(ranku).

However, in the above approaches, the 
number of processors to be used by each 
task is limited to a single processor. It is not 
feasible to deal with workflows composed of 
data-parallel tasks. 



Related Work (Cont.)
N'takpe' et al. proposed a scheduling 
approach for mixed parallel applications on 
Heterogeneous platforms.

However, their approach is restricted to 
concurrent workflows submitted at the same time. 
It is infeasible to deal with online workflows 
submitted at different time instants. 

The OWM proposed in the following is 
designed to deal with multiple online mixed-
parallel workflows that previous methods 
cannot handle well. 



Online Workflow Management 



Online Workflow Management (Cont.) 
In OWM, there are four steps: 

Critical Path Workflow Scheduling (CPWS). When 
a new workflow arrives, CPWS is adopted to 
calculate ranku of each task in the workflow and 
sort the tasks in descending order of ranku into a 
list. During the workflow’s execution, according to 
the order in each critical path list, CPWS
continuously submits the ready tasks in the list 
into the waiting queue until running into an 
unready task.



An example of CPWS



Online Workflow Management (Cont.) 

Task Scheduling. This step adopts the 
RANK_HYBD method.

Multi-processor task rearrangement. It improves 
processor utilization by applying techniques such 
as first fit, easy backfilling, and conservative 
backfilling scheduling approaches.



Online Workflow Management (Cont.) 
Adaptive Allocation (AA). When the number of 
clusters that can accommodate the first task in 
queue is 1, it first finds the cluster with the 
earliest estimated available time among other 
clusters. If the estimated finish time of the first 
task on that cluster is earlier than that on the free 
cluster, the task will be kept in the waiting queue. 
Otherwise, the system allocates the task to the 
free cluster right away.



Experimental Results

The performance metrics used in the 
following experiments include: 

Makespan. The time between submission and 
completion of a workflow. 

Schedule Length Ratio (SLR). 

win (%). The win value of an algorithm means the 
percentage of the workflows that have the 
shortest makespan when applying this algorithm.

In the following experiments, we compare 
OWM with two other approaches: 
RANK_HYBD and Fairness_Dynamic. 





Experimental Results (Cont.)
To experiment with different workload 
characteristics, we use the following 
parameters to generate different types of 
workflows. A workflow is represented as a 
Directed Acyclic Graph (DAG).

Node={20, 40, 60, 80, 100}

Shape={0.5, 1.0, 2.0}

OutDegree={1, 2, 3, 4, 5}

CCR={0.1, 0.5, 1.0, 1.5, 2.0}

BRange={0.1, 0.25, 0.5, 0.75, 1.0}

WDAG=100~1000
• [7] Topcuoglu, H., Hariri, S., and Wu, M. Y., “Performance-Effective and 

Low-Complexity Task Scheduling for Heterogeneous Computing”. IEEE 
Transactions on Parallel and Distributed Systems, 2(13):260-247, 2002.



Experimental Results (Cont.)
The values of the parameters are randomly 
selected from the corresponding sets given 
above for each DAG. The arrival interval 
value between DAGs is set based on Poisson 
distribution. Each experiment involves 20 
runs, and each run has 100 unique DAGs in a 
grid environment that contains 3 clusters 
each containing 30~50 processors 
respectively.

We experimented with both a uniform 
distribution and an exponential distribution 
for tasks’ computation cost.









Summary
Most existing workflow scheduling algorithms 
are restricted to handle only one single 
workflow. There are few researches for 
scheduling multiple or online workflows. In 
the above, we propose an online workflow 
management (OWM) approach for 
scheduling multiple online mixed-parallel 
workflows in a grid environment.
Our experiments show that OWM 
outperforms other methods in terms of 
average makesapn, average SLR and win (%) 
under different workloads.



Thank You!


