
Workload Model, Job Scheduling, and

Resource Allocation

Kuo-Chan Huang
kchuang@mail.ntcu.edu.tw

Department of Computer and Information Science
National Taichung University

26,28,30/07/2010

Parallel Processing Platforms

Single-processor computers

Vector processor, superscalar, …

Multi-processor computers

SMP, NUMA, …

Multi-computer systems

Cluster, grid, …

Job Types

Serial

Parallel

Interactive

batch

Resource Sharing Modes

dedicated mode

space sharing

time sharing

Different Performance Requirements

High performance

High throughput

Benefits of Load sharing with Cloud
Computing

Resource Sharing Experiments

No sharing

Fully sharing resources (single global job
queue)

Sharing idle resources only

Environment

 Cluster 1 Cluster 2
CPU number 128 128
Job number 5000 5000
Workload input SDSC IBM SP2 SDSC IBM SP2

No Sharing

 Cluster 1 Cluster 2
Average waiting time(sec.) 3862 8735.94
Resource utilization 66.73% 78.97%
System completion time(sec.) 5222857 4633183

Fully Sharing Resources

 Cluster 1 Cluster 2
Average waiting time(sec.) 1500.67 2051.5
Resource utilization 69.18% 69.18%
System completion time(sec.) 5163515 5163515

Sharing Idle Resources Only

 Cluster 1 Cluster 2
Average waiting time(sec.) 2655.86 3140.69
Resource utilization 68.6% 69.8%
System completion time(sec.) 5160782 5163515
Remote jobs 607 819

How to Protect Short Jobs From Long
Waiting Time?

Equal Partition
A whole cluster

Total Long Medium Short

Average waiting time(s) 2.20054e+07 1.11542e+07 2.53849e+07 2.9477e+07

Maximum waiting time(s) 46830315 46320104 46830315 46824312

System efficiency 99.6707

Total system time(s) 63637413

Partitioned into three spools

Total Long Medium Short

Average waiting time(s) 1.83969e+07 3.83782e+07 1.67545e+07 58060.4

Maximum waiting time(s) 100500952 100500952 44024989 258799

System efficiency 97.2949 91.0358 81.2617

Total system time(s) 119547002 119547002 63636473 19736781

Adaptive Partition
A whole cluster

Total Long Medium Short

Average waiting time(s) 2.03912e+07 2.74461e+07 1.4607e+07 730347

Maximum waiting time(s) 57722550 57722550 57549124 18357958

System efficiency 99.52%

Total system time(s) 77289484

Partitioned into three spools

Total Long Medium Short

Average waiting time(s) 2.29003e+07 3.33406e+07 1.34124e+07 930.659

Maximum waiting time(s) 76675196 76675196 34660733 16858

System efficiency 79.87% 96.31% 51.99% 3.21%

Total system time(s) 96304563

Adaptive Partition with Moldable Property
A whole cluster

Total Long Medium Short

Average waiting time(s) 1.27663e+07 2.81429e+07 9.58302e+06 573098

Maximum waiting time(s) 47929451 47929451 43425355 9778758

System efficiency 98.62%

Total system time(s) 64314336

Partitioned into three spools

Total Long Medium Short

Average waiting time(s) 2.25935e+07 2.30207e+07 2.21317e+07 2.26282e+07

Maximum waiting time(s) 49834919 49834919 46159089 47243432

System efficiency 91.34% 93.04% 90.54% 91.46%

Total system time(s) 69442636

Moldable Jobs

Effects of Parallelism Limit
 Limit=32

with 100%

efficiency

Limit=96

with 100%

efficiency

Limit=32

with 90%

efficiency

Limit=96

with 90%

efficiency

Average

waiting

time(sec.)

6.89629e+06 7.17462e+06 8.14743e+06 1.19398e+07

Maximum

waiting

time(sec.)

21652629 23674586 24806444 29343502

System

efficiency

99.58% 95.08% 99.57% 94.03%

Total

system

time(sec.)

33671055 35264343 36825171 48936949

Reasonable Waiting Time

Reasonable Waiting Time

The waiting time encountered by a job
is reasonable compared to its execution
time.

Waiting Ratio

The ratio of a job’s waiting time to its
execution time is a good indicator to tell
if the job’s waiting time is reasonable.

An Example
Assume job B arrives after job A by 10
minutes and at first both jobs have to wait in
a queue because of unavailable resources.
Assume jobs A and B request for the same
amount of processors, but job A requires
much longer execution time than job B, e.g.
1000 minutes to 10 minutes. If some
resources become available in 10 minutes
after job B arrives, but only enough for just
one job, which job should be set to run first?

Different Schedules

First-come first-served (FCFS)

Job A will be executed first, leading to
waiting times of 20 and 1010 minutes,
waiting ratios of 0.02 and 101 for jobs A
and B, respectively.

Let job B run first

Waiting time of 30 and 10 minutes, waiting
ratios of 0.03 and 1 for jobs A and B,
respectively.

Single-Processor Computer
Since jobs have to be processed
sequentially, minimum average waiting
time implies least average waiting ratio.

A schedule leading to least average
waiting ratio can be found through
solving the minimum average waiting
time problem.

It can be solved optimally by the
shortest-job-first greedy algorithm.

Parallel Computer

The situation is more complicated.

Minimum average waiting time does not
guarantee the least average waiting
ratio.

Job 2 Job 2 Job 2 Job 2
(10 seconds)(10 seconds)(10 seconds)(10 seconds)

Job 1 Job 1 Job 1 Job 1
(1000 seconds)(1000 seconds)(1000 seconds)(1000 seconds)

Second 0Second 0Second 0Second 0

Second 10Second 10Second 10Second 10

Second 20Second 20Second 20Second 20

Second 1000Second 1000Second 1000Second 1000

Processor 1Processor 1Processor 1Processor 1 Processor 2Processor 2Processor 2Processor 2 Processor 1Processor 1Processor 1Processor 1 Processor 2Processor 2Processor 2Processor 2

Job 2 Job 2 Job 2 Job 2
(10 seconds)(10 seconds)(10 seconds)(10 seconds)

Job 1 Job 1 Job 1 Job 1
(1000 seconds)(1000 seconds)(1000 seconds)(1000 seconds)

Second 1010Second 1010Second 1010Second 1010

Second 10Second 10Second 10Second 10

Second 0Second 0Second 0Second 0

(a)(a)(a)(a) (b)(b)(b)(b)

Case (a) Case (b)

Waiting ratio Job 1 Job 2 Average Job 1 Job 2 Average

0 1 0.5 0.01 0 0.005

Different Scheduling and Allocation
Policies

Multi-queue, multi-pool
Multi-queue, one-pool
Scan
queue priority

One-queue, one-pool
First-come, first-served (FCFS)
Largest-waiting-ratio-first
Shortest-job-first

Characteristics of Workload Log on
SDSC’s SP2

Number
of jobs

Maximum
execution
time (sec.)

Average
execution
time (sec.)

Maximum
number of
processors

per job

Average
number of
processors

per job

Group 1 4053 21922 267.13 8 3

Group 2 6795 64411 6746.27 128 16

Group 3 26067 118561 5657.81 128 12

Group 4 19398 64817 5935.92 128 6

Group 5 177 42262 462.46 50 4

Total 56490

Configuration of processor pools
for the simulations

Number of processors

One-queue
methods

442

Multi-queue
methods

group 1 group 2 group 3 group 4 group 5

8 128 128 128 50

Performance results for the 442-node
configuration

Average
queue
length

Average waiting ratio

total group 1 group 2 group 3 group 4 group 5

Multi-
queue

Multi-pool 4.75 21.46 3.67 14.91 37.38 6.27 0

Scan 0.21 0.18 0.03 0.78 0.15 0.05 0

Queue priority 0.22 0.25 0.03 1.27 0.13 0.11 0

One-
queue

FCFS 0.24 0.37 0.67 1.09 0.22 0.26 0

Largest-waiting-ratio-
first

0.21 0.09 0.15 0.23 0.08 0.03 0

Shortest-job-first 0.19 0.04 0.03 0.11 0.06 0.01 0

An example comparing shortest-job-
first and largest-waiting-ratio-first
Assume job 1 arrives at second zero
and job 2 at second 10, requiring 1000
and 10 seconds for execution,
respectively. Further, assume both
request the same amount of
processors. If at second zero the
resources are not available and at
second 10 the resources become
available but only enough for one job.

Arrival
time (sec.)

Execution
time (sec.)

Waiting
ratios at

second 10

Final waiting
ratios resulting
from shortest-

job-first

Final waiting ratios
resulting from largest-

waiting-ratio-first

Job 1 0 1000 0.01 0.02 0.01

Job 2 10 10 0 0 100

Average 0.01 50.005

One thing to be noted is that the shortest-job-first method
has a chance of suffering from the starvation problem.

Evaluation of Non-FCFS Policies for Variable

Partitioning Based Job Scheduling

Background

Variable Partitioning Based Job
Scheduling

FCFS

fragmentation

Backfilling

Estimation of execution time

Non-FCFS Policies

Backfilling
Conservative

Aggressive (EASY)

First available
Smallest first
Largest first

Simulation Configuration
Characteristics of the workload log on SDSC’s SP2

Number
of jobs

Maximum execution
time (sec.)

Average
execution time

(sec.)

Maximum
number of
processors

per job

Average
number of
processors

per job

Queue 1 4053 21922 267.13 8 3

Queue 2 6795 64411 6746.27 128 16

Queue 3 26067 118561 5657.81 128 12

Queue 4 19398 64817 5935.92 128 6

Queue 5 177 42262 462.46 50 4

Total 56490

Average queue lengths of workloads with

different load factor values

FCFS First Available Smallest First Largest First Backfilling

Load
Factor=1.0

0.41 0.33 0.33 0.35 0.35

1.5 0.73 0.54 0.52 0.55 0.57

2.0 1.35 0.85 0.80 0.91 0.89

2.5 3.41 1.64 1.52 1.75 1.92

3.0 9.46 3.30 2.71 3.96 4.69

4.0 208.33 37.59 30.14 71.55 54.26

Experimental Results
Average waiting time for different scheduling policies

FCFS
First Available Smallest First Largest First Backfilli ng

Load
Factor=1.0

102.71 49.17 47.40 51.86 50.73

1.5 335.20 142.49 134.14 150.79 157.63

2.0 956.25 370.18 343.39 417.00 396.85

2.5 2815.84 938.98 833.67 1075.84 1082.79

3.0 8328.50 2280.82 1909.66 3059.78 2863.94

4.0 350945.34 51191.40 49653.18 95794.07 65481.10

Average waiting ratio for different scheduling policies

FCFS
First Available Smallest First Largest First Backfilli ng

Load
Factor=1.0

0.77 0.17 0.15 0.21 0.16

1.5 1.89 0.51 0.40 0.53 0.53

2.0 4.08 0.86 0.79 1.15 0.85

2.5 10.38 1.68 1.29 2.03 1.75

3.0 26.92 3.15 2.19 5.27 3.22

4.0 840.93 62.63 21.99 153.65 50.72

Max waiting time for different scheduling policies

FCFS
First Available Smallest First Largest First Backfilli ng

Load
Factor=1.0

34954 38814 38814 38814 34954

1.5 57605 61864 71250 61864 57520

2.0 80424 124123 174054 98256 80420

2.5 130643 478048 496785 427821 119601

3.0 211529 753552 959295 886564 191421

4.0 1955908 8876911 28375296 19951289 1103174

Max waiting ratio for different scheduling policies

FCFS
First Available Smallest First Largest First Backfilli ng

Load
Factor=1.0

1377.84 560.22 272.17 560.22 249.19

1.5 1544.51 495.29 489.43 495.29 447.10

2.0 1640.79 589.54 589.54 589.54 541.85

2.5 1702.02 658.58 625.37 1006.77 602.65

3.0 1855.74 838.80 1780.38 2120.17 639.40

4.0 21015.27 10827.62 59653.56 19426.28 4426.99

Standard deviation of waiting time for different scheduling policies

FCFS
First Available Smallest First Largest First Backfilli ng

Load
Factor=1.0

1170.82 794.97 789.76 818.80 792.75

1.5 2678.54 1573.64 1581.04 1651.43 1663.42

2.0 5454.09 3253.52 3130.04 3407.55 3097.36

2.5 10918.70 6206.17 6476.86 7011.77 5858.50

3.0 22453.32 12702.28 15343.95 16536.30 11125.66

4.0 615628.45 227038.52 714550.88 412196.85 182894.95

Standard deviation of waiting ratio for different scheduling policies

FCFS
First Available Smallest First Largest First Backfilli ng

Load
Factor=1.0

15.80 3.87 3.03 4.93 2.91

1.5 24.03 7.18 6.47 7.79 7.08

2.0 35.83 11.03 10.41 14.06 10.14

2.5 63.02 15.78 13.25 19.86 15.19

3.0 118.83 23.28 22.82 42.61 21.24

4.0 2570.26 353.87 523.54 869.26 289.64

Detailed performance change comparisons of waiting times and ratios for non-FCFS policies

Load
Factor=1.0

1.5 2.0 2.5 3.0 4.0

First Available less 681 1332 2928 6221 12499 29037

More 100 180 465 730 1085 1601

equal 55709 54978 53097 49539 42906 25852

Equal(nonzero) 803 1089 1413 1628 1907 963

Smallest First less 845 1622 3437 6762 13131 29318

More 163 276 585 1001 1546 1926

equal 55482 54592 52468 48727 41813 25246

Equal(nonzero) 576 703 784 816 814 357

Largest First less 693 1367 2943 6267 12595 28003

More 236 354 751 1183 1711 3011

equal 55561 54769 52796 49040 42184 25476

Equal(nonzero) 655 880 1112 1129 1185 587

Backfilling less 631 1254 2781 6165 11984 29516

More 0 0 0 0 0 0

equal 55859 55236 53709 50325 44506 26974

Equal(nonzero) 953 1347 2025 2414 3507 2085

Discussion
Non-FCFS methods can effectively improve
the overall system utilization and
performance. The simulation results indicate
that the smallest first non-FCFS policy can
reduce the waiting time to one-eighth and
the waiting ratio to one-fortieth of the original
values for the FCFS policy.
As the worst case is concerned, the backfilling
policy is superior .
Setting threshold value may be able to
improve the performance of the worst case
for the non-FCFS policies.

Multi-cluster Computing Environment

Cross-Site Parallel Computation

Slowdown ratio =

Reducing the frequency of cross-site parallel computation
could improve system performance.
Both kinds of allocation methods for single-site and cross-
site parallel jobs could influence the frequency.

ingleSiteimeWithinSExecutionT

iesiteBoundarimeAcrossSExecutionT

Processor Allocation Methods for Reducing
Cross-Site Parallel Computation
Allocating single-site parallel jobs

First fit

Best fit

Worst fit

Median fit

Random fit

Allocating cross-site parallel jobs
Fixed Order

Larger first

Smaller first

Configuration of Multi-cluster Environment
The processors on all clusters run at the same speed.

total cluster 1 cluster 2 cluster 3 cluster 4 cluster 5

Number of
processors

442 8 128 128 128 50

Average waiting time for different slowdown ratios (sec.)

Slowdown ratio First Fit Median Fit Random Fit Best Fit Worst Fit

1 50.36 50.36 50.36 50.36 50.36

2 61.71 65.08 80.10 60.48 93.93

4 117.57 166.13 92.48 64.05 530.58

5 200.71 959.88 133.83 99.44 2219.90

Average waiting ratio for different slowdown ratios

Slowdown
ratio

First Fit Median Fit Random Fit Best Fit Worst Fit

1 0.37 0.37 0.37 0.37 0.37

2 0.47 0.50 0.65 0.47 0.76

4 0.90 1.28 0.86 0.51 5.06

5 1.88 10.11 1.14 0.75 23.11

Average waiting time for different heuristic methods (sec.)

Slowdown
ratio

Best Fit with Fixed
Order

Best Fit with Smaller
First

Best Fit with Larger
First

1 50.36 50.36 50.36

2 60.48 60.13 60.23

4 64.05 64.07 63.71

5 99.44 176.57 66.12

Average waiting ratio for different heuristic methods

Slowdown
ratio

Best Fit with Fixed
Order

Best Fit with Smaller
First

Best Fit with Larger
First

1 0.37 0.37 0.37

2 0.47 0.47 0.47

4 0.51 0.51 0.51

5 0.75 1.61 0.53

An Integrated Approach

The previous single-pool centralized queue method.

FCFS for job scheduling without special
processor allocation methods for reducing
cross-site parallel computation.

The proposed integrated approach

Smallest first policy for job scheduling and the
best-fit with larger first policy for processor
allocation.

Slowdown ratio Average waiting time (sec.) Average waiting ratio

Single-pool
centralized queue

The integrated
approach

Single-pool
centralized queue

The integrated
approach

5 200.71 28.54 1.88 0.08

4 117.57 23.68 0.90 0.07

2 61.71 23.30 0.47 0.07

no slowdown 50.36 22.18 0.37 0.06

Adaptive Policy in Heterogeneous
Multi-cluster Environment

Single-cluster allocation

dynamically changes between the best-fit
and the fastest-one policies

Multi-cluster allocation

Searching for Better Load Sharing
Methods in Multi-Cluster

Environment

Load Sharing Policies

Independent clusters
Forwarding to no-need-to-wait site
Forwarding to shortest-queue site
Forwarding to least-load site

Multi-pool centralized queue
Single-pool centralized queue

Slowdown ratio

One big cluster

clusterinprocessorsofNumber

mparallelisiJobruntimeiJob
i

)).().((∑ ×

ingleSiteimeWithinSExecutionT

iesiteBoundarimeAcrossSExecutionT

Two-Level Scheduling

Empty queue only

Shortest queue first

Least load first

Forwarding to shortest-queue site with two local
queues

Characteristics of Workload Log on
SDSC’s SP2

Number
of jobs

Maximum
execution time (sec.)

Average
execution time

(sec.)

Maximum
number of

processors per
job

Average
number of

processors per
job

Queue 1 4053 21922 267.13 8 3

Queue 2 6795 64411 6746.27 128 16

Queue 3 26067 118561 5657.81 128 12

Queue 4 19398 64817 5935.92 128 6

Queue 5 177 42262 462.46 50 4

Total 56490

Configuration of the Computing Grid

Total Site 1 Site 2 site3 Site 4 Site 5

Number of
processors

442 8 128 128 128 50

Performance Evaluation of Load Sharing Policies
Load sharing methods Average

waiting
time(sec.)

Standard
deviation

Average
waiting

ratio

Standard
deviation

Independent clusters 2772.63 10797.80 21.46 148.07

Local queue based methods

Forwarding to no-need-to-wait site 111.08 1658.17 0.51 8.76

Forwarding to shortest-queue site 91.80 1560.22 0.41 15.59

Forwarding to least-load site 86.28 1477.90 0.30 9.32

Centralized queue based methods

Multi-pool centralized queue 127.64 1487.69 1.03 20.53

Single-pool centralized queue
(slowdown ratio: 6)

2184.36 17251.00 23.84 273.75

Single-pool centralized queue
(slowdown ratio: 5)

200.71 2845.86 1.88 37.81

Single-pool centralized queue
(slowdown ratio: 4)

117.57 1749.76 0.90 19.42

Single-pool centralized queue
(slowdown ratio: 2)

61.71 946.55 0.47 13.88

Single-pool centralized queue
(no slowdown)

50.36 774.95 0.37 11.00

One big cluster 50.36 774.95 0.37 11.00

Two-level scheduling

Empty-queue-only multi-pool grid 67.86 1239.00 0.22 6.34

Shortest-queue-first multi-pool grid 75.23 1361.69 0.23 5.14

Least-load-first multi-pool grid 73.22 1331.80 0.28 8.50

Methods with two local queues

Forwarding to shortest-queue site 94.51 1764.42 0.34 10.47

Forwarding to shortest-queue site
(threshold=max. waiting time)

91.40 1647.28 0.34 10.46

Load sharing methods Maximum waiting time(sec.) Maximum waiting ratio

Independent clusters 144925 4420.26

Forwarding to no-need-to-wait site 63732 652.70

Forwarding to shortest-queue site 86421 2059.92

Forwarding to least-load site 63732 1141.42

Multi-pool centralized queue 34620 1329.44

Single-pool centralized queue
(slowdown ratio: 6)

323130 9808.96

Single-pool centralized queue
(slowdown ratio: 5)

99864 1879.77

Single-pool centralized queue
(slowdown ratio: 4)

78659 1336.05

Single-pool centralized queue
(slowdown ratio: 2)

33699 1307.00

Single-pool centralized queue
(no slowdown)

30579 1204.71

One big cluster 30579 1204.71

Empty-queue-only multi-pool grid 61017 887.49

Shortest-queue-first multi-pool grid 63732 336.95

Least-load-first multi-pool grid 63732 1412.74

Forwarding to shortest-queue site with
two local queues

144957 1364.53

Forwarding to shortest-queue site with
two local queues (threshold=max.
waiting time)

105022 1364.53

Summary
Load sharing mechanisms can greatly improve the
overall system performance.

More accurate estimation of workload in each site
can improve performance of the local queue based
methods.

Shorter waiting time do not necessarily deliver
smaller waiting ratios

Two-level scheduling methods lead to smaller
waiting ratios than the one big cluster

Performance Evaluation of
Adaptive Processor Allocation
Policies for Moldable Parallel

Batch Jobs

Partition Specification

Fixed.

Variable.

Adaptive.

Dynamic.

Job Flexibility

Rigid.

Moldable.

Evolving.

Malleable.

Application Characteristics

Batch processing.

Moldable.

Processor Allocation Policies

Parallelism limit.

Adaptive processor allocation

No adaptive scaling.

Adaptive scaling down.

Adaptive scaling up and down.

Restricted scaling up and down.

SDSC’s SP2 Workload
Number of

jobs
Maximum execution

time (sec.)
Average
execution
time (sec.)

Maximum
number of
processors

per job

Average
number of
processors

per job

Queue 1 4053 21922 267.13 8 3

Queue 2 6795 64411 6746.27 128 16

Queue 3 26067 118561 5657.81 128 12

Queue 4 19398 64817 5935.92 128 6

Queue 5 177 42262 462.46 50 4

Total 56490

Original Workload
Parallelism
limit

Performance
metrics

No adaptive
scaling

Adaptive
scaling down

Adaptive
scaling up and
down

Restricted
scaling up and
down

96 Waiting time 34489 2666 11796 3034

Completion time 39972 17716 13191 17255

64 Waiting time 30751 2555 11739 3091

Completion time 36246 18058 13122 16629

32 Waiting time 13849 2546 9731 2939

Completion time 19915 17823 12499 15680

16 Waiting time 8857 2037 7410 2578

Completion time 16905 17044 12945 15678

Uniform Distribution
Parallelism
limit

Performance
metrics

No adaptive
scaling

Adaptive
scaling down

Adaptive
scaling up and
down

Restricted
scaling up and
down

96 Waiting time 29930 2286 4584 2302

Completion time 30501 4277 5123 4088

64 Waiting time 10792 2209 4638 2267

Completion time 11477 4316 5189 4097

32 Waiting time 5746 2167 4222 2180

Completion time 6914 4471 5325 4306

16 Waiting time 4114 2146 3683 2122

Completion time 6352 5119 5889 5053

Normal Distribution
Parallelism
limit

Performance
metrics

No adaptive
scaling

Adaptive
scaling down

Adaptive
scaling up and
down

Restricted
scaling up and
down

96 Waiting time 38358 3263 4848 3481

Completion time 38909 4843 5381 4773

64 Waiting time 8409 3390 4895 3291

Completion time 9028 5029 5440 4641

32 Waiting time 5024 3189 4764 3212

Completion time 6125 4882 5855 4816

16 Waiting time 4420 3519 4373 3520

Completion time 6606 5977 6557 5967

Summary
Evaluation of several adaptive processor
allocation policies for moldable parallel
batch jobs on space-sharing parallel
computers.

More than eight times of performance
improvement is achievable.

(Restricted) Adaptive scaling up and down
policy delivers better performance.

Actual effects of adaptive processor
allocation are very complicated and may
depend on processor number distributions.

Adaptive Processor Allocation in
Heterogeneous Computational Grid

The Problem

How to handle the situation where a
parallel job cannot fit in any single site
in the grid environment.

Multi-site parallel execution

Adaptive processor allocation

Both approaches might incur extended
execution time.

Adaptive Processor Allocation

Space sharing

Moldable jobs

Heterogeneous computational grid

SDSC’s SP2 Workload
Number of

jobs
Maximum execution

time (sec.)
Average
execution
time (sec.)

Maximum
number of
processors

per job

Average
number of
processors

per job

Queue 1 4053 21922 267.13 8 3

Queue 2 6795 64411 6746.27 128 16

Queue 3 26067 118561 5657.81 128 12

Queue 4 19398 64817 5935.92 128 6

Queue 5 177 42262 462.46 50 4

Total 56490

Configurable Parameters

Speed vector (sp1,sp2,sp3,sp4,sp5)

Load vector (ld1,ld2,ld3,ld4,ld5)

Scheduling policy

FCFS, SJF

Single-site allocation policy

Best-fit, fastest, adaptive

Threshold

power

Check if the waiting queue becomes empty
after this job ’’’’ s allocation

Pick up the site with the largest free
computing power Pick up the site whose free computing power is best close to the

required computing power of the job

No

Yes

No

Check if the selected site’’’’ s
free computing power
exceeds the predefined

threshold

Perform
allocation

Yes

4760
4780

4800
4820

4840
4860

4880

(sec.)

without adaptive

allocation

with adaptive

allocation

speed=(1,3,5,7,9) load=(6.7,6.7,6.7,6.7,6.7) power=0.5

average turnaround time

4600

4700

4800

4900

5000

5100

(sec.)

0 0.1 0.5 1

power

speed=(1,3,5,7,9) load=(6.7,6.7,6.7,6.7,6.7)

average turnaround time

Adaptive processor allocation with different

power values under SDSC’s SP2 workload

4600

4700

4800

4900

5000

5100

(sec.)

0 0.1 0.5 1

power

speed=(1,3,5,7,9) load=(6.7,6.7,6.7,6.7,6.7)

average turnaround time

Adaptive processor allocation with different

power values under LANL’s CM5 workload

1800
1850
1900
1950
2000
2050
2100

(sec.)

0 0.1 0.5 1

power

speed=(1,3,5,7) load=(6.7,6.7,6.7,6.7)

average turnaround time

Comparison under SDSC’s SP2 workload and

uniformly distributed slowdown values

4600
4700
4800
4900
5000
5100

(sec.)

adaptive multi-site

(p=1.1)

multi-site

(p=2)

multi-site

(p=3)

power

speed=(1,3,5,7,9) load=(6.7,6.7,6.7,6.7,6.7)

average turnaround time

Comparison under SDSC’s SP2 workload and

normally distributed slowdown values

4600

4700

4800

4900

5000

(sec.)

adaptive multi-site

(p=1.1)

multi-site

(p=2)

multi-site

(p=3)

power

speed=(1,3,5,7,9) load=(6.7,6.7,6.7,6.7,6.7)

average turnaround time

Thorough comparison under SDSC’s SP2

workload

0

10000

20000

30000

40000

(sec.)

adaptive (power=0.5) multi-site (p=1.5)

average turnaround time for 120 simulation cases corresponding to permutation of speed vector

(1,3,5,7,9)

average turnaround time

Summary
heterogeneity presents a challenge for
effectively arranging load sharing activities
in a computational grid.

adaptive processor allocation is capable of
significantly improving the overall system
performance in a heterogeneous
computational grid environment.

Job Scheduling in Heterogeneous
Cloud

Load sharing performance in a
homogeneous cloud (Best-fit)

0

2000

4000

6000

8000

10000

Average

Response Time

(sec.)

FCFS SJF

Scheduling Policy

Independent Sites

cloud

Load sharing performance in a

heterogeneous cloud using best-fit policy

0
5000

10000
15000
20000

Average Response

Time (sec.)

FCFS SJF

Scheduling Policy

speed=(0.6, 0.7, 2.4, 9.5, 4.3)

Independent Sites

cloud

Performance of best-fit policy with large

speed difference among participating sites

0

5000
10000
15000
20000

Average Response

Time (sec.)

FCFS SJF

Scheduling Policy

speed=(0.6, 0.7, 2.4, 9.5, 4.3)

Independent Sites

Cloud Considering All Sites
(threshold ratio=0)

Cloud Ignoring Slower Sites
(threshold ratio=1)

Performance of best-fit policy with small

speed difference among participating sites

0

2000

4000

6000

8000

Average Response

Time (sec.)

FCFS SJF

Scheduling Policy

speed=(1.5, 1.4, 1.3, 1.2, 1)

Independent Sites

Cloud Considering All Sites
(threshold ratio=0)

Cloud Ignoring Slower Sites
(threshold ratio=1)

Comparison of the fastest-one policy and

the best-fit policy (I)

0

2000
4000

6000Average

Response Time

(sec.)

FCFS SJF

Scheduling Policy

speed=(0.6, 0.7, 2.4, 9.5, 4.3) load=(1, 1, 1, 1, 1) Threshold Ratio=1

for Ignoring Slower Sites

best-fit policy

fastest-one policy

Comparison of the fastest-one policy and

the best-fit policy (II)

0

200000

400000

600000

Average Response

Time (sec.)

FCFS SJF

Scheduling Policy

speed=(1.5, 1.4, 1.3, 1.2, 1) load=(5, 5, 5, 5, 1) Threshold Ratio=0 for

Considering All Sites

best-fit policy

fastest-one policy

Performance of the adaptive policy

18347.23

3827.863804.93

0

5000

10000

15000

20000

Average

Response Time

(sec.)

FCFS

Scheduling Policy

speed=(0.6, 0.7, 2.4, 9.5, 4.3) Threshold Ratio=0 for Considering All

Sites

best-fit policy

fastest-one policy

adaptive policy

fair load sharing policy

Pick up the next job for allocation from waiting queue according to the specified Pick up the next job for allocation from waiting queue according to the specified Pick up the next job for allocation from waiting queue according to the specified Pick up the next job for allocation from waiting queue according to the specified
job scheduling policy job scheduling policy job scheduling policy job scheduling policy ((((FCFS or SJFFCFS or SJFFCFS or SJFFCFS or SJF))))

Check all the sites in the grid which meet the specified computing speed threshold to see if there exists at least a site with Check all the sites in the grid which meet the specified computing speed threshold to see if there exists at least a site with Check all the sites in the grid which meet the specified computing speed threshold to see if there exists at least a site with Check all the sites in the grid which meet the specified computing speed threshold to see if there exists at least a site with
enough free processors for the job to start executionenough free processors for the job to start executionenough free processors for the job to start executionenough free processors for the job to start execution

 Check the job Check the job Check the job Check the job ’’’’s home site to see if it is possible to reclaim s home site to see if it is possible to reclaim s home site to see if it is possible to reclaim s home site to see if it is possible to reclaim
enough free processors for this job by deleting some of the running enough free processors for this job by deleting some of the running enough free processors for this job by deleting some of the running enough free processors for this job by deleting some of the running

remote jobsremote jobsremote jobsremote jobs

Choose a site for allocating the job according to the specified site selection Choose a site for allocating the job according to the specified site selection Choose a site for allocating the job according to the specified site selection Choose a site for allocating the job according to the specified site selection
policy policy policy policy ((((bestbestbestbest----fitfitfitfit , , , , fastestfastestfastestfastest, , , , or adaptiveor adaptiveor adaptiveor adaptive).).).).

NoNoNoNoYesYesYesYes

Allocate the job to the Allocate the job to the Allocate the job to the Allocate the job to the
selected siteselected siteselected siteselected site

NoNoNoNoYesYesYesYes

Sort the running remote jobs in the reverse order of their start timeSort the running remote jobs in the reverse order of their start timeSort the running remote jobs in the reverse order of their start timeSort the running remote jobs in the reverse order of their start time ThenThenThenThen, , , , each time delete a running remote job and put it back to the front of each time delete a running remote job and put it back to the front of each time delete a running remote job and put it back to the front of each time delete a running remote job and put it back to the front of
the waiting queuethe waiting queuethe waiting queuethe waiting queue Repeat this reclaiming process until the number of free processors is enough for the job to start executionRepeat this reclaiming process until the number of free processors is enough for the job to start executionRepeat this reclaiming process until the number of free processors is enough for the job to start executionRepeat this reclaiming process until the number of free processors is enough for the job to start execution Allocate the job Allocate the job Allocate the job Allocate the job

to its home site for executionto its home site for executionto its home site for executionto its home site for execution

Average job response times (sec.) for

different load sharing policies
Entire

grid
Site 1 Site 2 Site 3 Site 4 Site 5

Independent
sites

9260 14216 10964 10199 6448 57

Ordinary load
sharing
policy

4135 191 4758 4799 3881 559

Fair load
sharing
policy

4152 193 4750 4798 3939 57

Adaptive Processor Allocation with
Estimated Job Execution Time in

Heterogeneous Cloud

Introduction

This part presents an approach, taking
advantage of the estimated job execution
time, to effectively allocating processors to
jobs submitted to a heterogeneous cloud.

Many parallel computer systems installed in
computing centers worldwide, which adopts
backfilling based job scheduling policies, require
that users should provide estimated job execution
time when submitting a job to the system.

Introduction (Cont.)
The proposed adaptive processor allocation
approach can effectively improve the overall
system performance, in terms of jobs’
average turnaround time, from two to four
times, compared to currently used methods.

Introduction (Cont.)
A cloud usually consists of several parallel or
cluster computers located at different sites.

Communications between processors within the
same site are usually achieved through high-speed
networking devices

Messages passed across different sites have to go
through a much slower wide-area network or
Internet.

A job allocated to a pool of processors within
the same site can usually run faster than if it
is assigned to processors across different
sites.

Introduction (Cont.)
Processor allocation deals with the first job in
the waiting queue. When the parallel job
cannot fit into any single site in a
heterogeneous cloud, the system, in general,
may have the following choices:

simply keep the job waiting until a single site
having enough free processors becomes available

allow the job to run across several sites

for a moldable job the system can even run it with
a less number of processors than originally
specified.

Introduction (Cont.)
The adaptive processor allocation approach
dynamically makes the best allocation
decision among the above allocation choices.

The Cloud Model
There are several independent computing
sites with their own local workload. The cloud
integrates the sites and shares their incoming
jobs.
The nodes on each site run at the same speed and
are linked with a fast interconnection network.

Each site adopts space-sharing and run the jobs in
an exclusive fashion.

All computing nodes in the cloud are assumed to
be binary compatible. The cloud is heterogeneous
in the sense that nodes on different sites may
differ in computing speed and different sites may
have different numbers of nodes.

The Cloud Model (Cont.)
The parallel jobs in this model are assumed to be
moldable. We also assume the ability of jobs to
run in multi-site mode.

We used SDSC’s SP2 workload logs as the
input workload in the simulations.

The log contains records collected from May 1998
to April 2000.

Number
of jobs

Maximum
execution time

Average
execution
time

Maximum number
of processors/job

Average
number of
processors/job

Queue 1 4053 21922 267.13 8 3

Queue 2 6795 64411 6746.27 128 16

Queue 3 26067 118561 5657.81 128 12

Queue 4 19398 64817 5935.92 128 6

Queue 5 177 42262 462.46 50 4

Total 56490

Configuration of the Cloud

total site 1 site 2 site 3 site 4 site 5

Number of
processors

442 8 128 128 128 50

The Cloud Model (Cont.)

we define a speed vector,
speed=(sp1,sp2,sp3,sp4,sp5), to
describe the relative computing speeds
of all the five sites in the cloud.

We also define a load vector,
load=(ld1,ld2,ld3,ld4,ld5), which is used to
derive different loading levels from the
original workload data by multiplying the load
value ldi to the execution times of all jobs at
site i.

Current Allocation Practices
Multi-pool configuration

Each job must be allocated to exactly one site. If a
job cannot fit into any single site in the cloud, it
would have to wait.

Multi-site parallel execution.

Run a parallel job across several sites if there is no
single site having enough free processors.

Moldable processor allocation.

Instead of keeping the job waiting in queue, the
system automatically scales the job’s parallelism
down to use exactly the number of free
processors.

Current Allocation Practices (Cont.)
However, none of the above three
approaches can consistently deliver the best
performance under different workloads or
system configurations.

Table 3. Performance under speed vector (1,5,4,5,2) and load vector (1,1,1,1,1)

Average turnaround time (sec.)
Average queue

length

Multi-pool 1102 0.06

Multi-site
(slowdown=1.5)

1103 0.05

Multi-site
(slowdown=2.0)

1103 0.05

Multi-site
(slowdown=2.5)

1104 0.05

Multi-site
(slowdown=3.0)

1105 0.05

Moldable 1109 0.03

Table 4. Performance under speed vector (4,1,2,1,5) and load vector (1,1,1,1,1)

Average turnaround
time (sec.)

Average
queue length

Multi-pool 1576 0.16

Multi-site
(slowdown=1.5)

1560 0.13

Multi-site
(slowdown=2.0)

1565 0.13

Multi-site
(slowdown=2.5)

1571 0.13

Table 5. Performance under speed vector (1,5,4,5,2) and load vector (5,5,5,5,5)

Average turnaround
time (sec.)

Average queue
length

Multi-pool 5708 0.44

Multi-site
(slowdown=1.5)

5748 0.40

Multi-site
(slowdown=2.0)

5827 0.44

Multi-site
(slowdown=2.5)

5895 0.45

Multi-site
(slowdown=3.0)

6088 0.50

Moldable 5799 0.18

Table 6. Performance under speed vector (4,1,2,1,5) and load vector (5,5,5,5,5)

Average turnaround
time (sec.)

Average queue
length

Multi-pool 33432 19.58

Multi-site
(slowdown=1.5)

1419841 594

Multi-site
(slowdown=2.0)

3705479 1369

Multi-site
(slowdown=2.5)

10036993 5731

Multi-site
(slowdown=3.0)

14508657 7307

Moldable 13525 0.63

Adaptive Processor Allocation
Variables:

T0, T1, T2, T3: execution times for processor allocation policies;
S0, S1, S2, S3: set of sites chosen by processor allocation policies;

While (job queue is not empty)
{
Pick up the first job from the job queue;
If (any cluster being able to accommodate the job)
{
Apply the fastest-one policy to compute and set
T0 = the execution time to be taken
S0 = the target site
}

Else
{
T1 = Min{Ti}, where Ti is (the estimated waiting time + the

estimated single-site runtime) for site i in the grid sites
S1 = the site taking the total turnaround time T1

if (total free processors in the grid is enough for multi-site allocation)
{
T2 = the estimated runtime of multi-site allocation
S2 = the set of sites for the allocation
}
else
T2 = ∞;

if (total number of free processors in the grid is not zero)
{
T3 = Min{Tj}, where Tj is the estimated runtime when

scaling down to site j with non-zero processors
S3 = the site taking execution time T3
}

else
T3 = ∞

}
if (T0 is the shortest time)
Run the job on site S0;
else if (T1 is the shortest time)

Keep the job waiting in queue until site S1 have enough processors;
else if (T2 is the shortest time)

Apply multi-site parallel execution using the sites in S2;
else
Scale down parallelism for immediate execution on site S3;

}

Table 7. Performance under speed vector (1,5,4,5,2) and load vector(1,1,1,1,1)

Average turnaround time (sec.)

Multi-pool 1102

Multi-site
(slowdown=1.5)

1103

Moldable 1109

Proposed approach
(slowdown=1.5)

254

Table 8. Performance under speed vector (4,1,2,1,5) and load vector(1,1,1,1,1)

Average turnaround time (sec.)

Multi-pool 1576

Multi-site
(slowdown=1.5)

1560

Moldable 1547

Proposed approach
(slowdown=1.5)

477

Table 9. Performance under speed vector (1,5,4,5,2) and load vector(5,5,5,5,5)

Average turnaround time (sec.)

Multi-pool 5708

Multi-site
(slowdown=1.5)

5748

Moldable 5799

Proposed approach
(slowdown=1.5)

1735

Table 10. Performance under speed vector (4,1,2,1,5) and load vector(5,5,5,5,5)

Average turnaround time (sec.)

Multi-pool 33432

Multi-site
(slowdown=1.5)

1419841

Moldable 13525

Proposed approach
(slowdown=1.5)

6162

Summary
This part investigates the processor allocation
issue in heterogeneous cloud environments.
An adaptive processor allocation approach is
proposed, which takes advantage of the
estimated job execution time commonly
required by many parallel systems in
computing centers.
The proposed approach can dynamically
make the best allocation decision among
several allocation choices.
The simulation results indicate that the
proposed approach can consistently
outperform the three current practices under
different workload and system configurations.

Summary (Cont.)
The adaptive approach effectively improves
the overall system performance, in terms of
jobs’ average turnaround time, from two to
four times under different conditions.

On Effects of Resource Fragmentation
on Job Scheduling Performance in a

Multi-Cluster Cloud

Introduction

This part presents the studies on analysis of
job scheduling performance in a multi-cluster
cloud from the perspective of resource
fragmentation.

Two parts of job scheduling will impact on
resource fragmentation:
job selection

site selection.

A series of simulations have been conducted
to investigate the effects of resource
fragmentation in terms of average waiting
time of all jobs.

Resource Fragmentation Issues
Resource utilization has a significant impact
on system performance and thus has been a
research topic in many kinds of computer
systems.

For example, dynamic memory allocation methods
were developed to alleviate external
fragmentation in memory space.

Reduced external fragmentation implies more
efficient resource utilization and can lead to
improved system performance because of being
able to support more applications simultaneously.

Resource Fragmentation Issues (Cont.)

On parallel or cluster computer systems,
backfilling scheduling methods have been
proposed to improve jobs’ turnaround time
through improving resource utilization.

This part discusses the resource
fragmentation issue in a cloud, consisting of
multiple clusters or parallel computers, and
investigate its effects on job scheduling
performance.

An Example of Resource Fragmentation

Site 1
4 free processors

Site 2
2 free processors

Site 3
4 free processors

Site 4
6 free processors

An incoming job

requir ing 10
processors

Resource Fragmentation Issues (Cont.)

On parallel or cluster computer systems, job
scheduling mainly determines the sequence
of starting execution for the jobs waiting in
the queue
called job selection in the following.

Since a cloud is composed of several sites
and intends to allocate a parallel job onto a
single site, job scheduling in cloud has to
include a second step after job selection.
The second step, called site selection in the
following, chooses an appropriate site with
enough free processors for allocating the selected
job in the job selection step.

Resource Fragmentation Issues (Cont.)
The following studies the resource
fragmentation effects under different job
selection and site selection methods

Simulation Model

Our simulation studies were based on publicly
downloadable workload traces.

We used the SDSC’s SP2 workload logs as the
input workload in the simulations.

73496 job records collected on a 128-node IBM

SP2 machine from May 1998 to April 2000

56490 job records are used in the simulations
after excluding some problematic records based

on the completed field in the log.

Number
of jobs

Maximum
execution time

Average
execution
time

Maximum number
of processors/job

Average
number of
processors/job

Queue 1 4053 21922 267.13 8 3

Queue 2 6795 64411 6746.27 128 16

Queue 3 26067 118561 5657.81 128 12

Queue 4 19398 64817 5935.92 128 6

Queue 5 177 42262 462.46 50 4

Total 56490

Job Characteristics in SDSC’s SP2 Log

Configuration of the Cloud

total site 1 site 2 site 3 site 4 site 5

Number of
processors

442 8 128 128 128 50

We define a load vector,
load=(ld1,ld2,ld3,ld4,ld5), to study different
workload conditions from the original
workload data by multiplying the load value
ldi to the execution times of all jobs at site i.

Site Selection Methods
First-fit

Best-fit

Worst-fit

Median-fit

Random-fit

First Fit

Best Fit

Worst Fit

Median Fit

Random Fit

Performance under FCFS Scheduling

Resource Fragmentation Counts

These results indicate that resource fragmentation
is the main cause of the performance difference
among different site allocation methods.

Job Scheduling Methods
First-Come, First-Served (FCFS)

Smallest job first (SJF)

Largest job first (LJF)

Shortest runtime first (SRF)

Performance of Job Scheduling Methods

Resource Fragmentation Counts

CO-CONSIDERATION OF JOB

SELECTION AND SITE SELECTION

First-fit job first (FFJF)

Best-fit job first (BFJF)

Performance Results

Resource Fragmentation Counts

Average Queue Length

Discussions

Methods co-considering job selection and site
selection in one single step seem bringing no
significant improvement.

resource fragmentation count is not
necessarily proportional to the average

waiting time for job selection methods.

resource fragmentation may not be the sole effect
on job selection performance.

Discussions (Cont.)

In addition to resource fragmentation,
keeping as many jobs running as possible
may be another important performance factor
when average waiting time is concerned.

More jobs running implies less jobs waiting queue.

As job selection performance is concerned
average queue length may have stronger
effects than resource fragmentation.

Summary
This paper presents the work in analyzing the
underlying causes that lead to the
performance difference between different job
scheduling methods in multi-cluster cloud
environments.
The performance results in the experiments
indicate that resource fragmentation plays an
important role on job scheduling
performance.

Summary (Cont.)
Good job selection and site selection
mechanisms are proposed to form an
effective job scheduling method which could
reduce resource fragmentation and thus
improve system performance.

Achieving more than five times performance
improvement compared to primitive job scheduling
methods.

Scheduling Task-Parallel Jobs in
Parallel and Distributed Systems

Task Graph (DAG)
A task graph is a directed acyclic graph
G=(V,E,w,c) representing a job J.

The nodes in V represent the tasks of J.

The edges in E representing the
communications between the tasks.

The positive weight w(n) associated with node
n represents its computation cost.

The nonnegative weight c(eij) associated with
edge eij represents its communication cost.

Task Graph
A task graph can be used to represent the
structure of a program, where a task is a
statement, or the structure of a large job,
where each task may itself be the execution
of a specific program.
Limitations

It does not provide any mechanism to
efficiently represent an iterative computation.
It does not exhibit conditional execution; that
is, there is no branching.

Task Graph
Exercise:

Construct a task graph for the code below. Each line
shall be represented by one task, named by its line
number, and the costs shall be assumed as follows:

• Computation. Assignment alone: 1 unit; add/subtract
operation: 2 units; multiply operation: 3 units; divide
operation: 4 units.

• Communication. Communicating a variable with a small letter
and with a capital letter costs 1 unit and 2 units, respectively.

1: a = 56
2: b = a * 10 + 2
3: C = (b – 2) / 3
4: D = 91.125
5: E = D * a
6: F = D * b + 1
7: g = 11 + a
8: H = (E + F) * g

Computer Representation of Graphs
There are two standard ways to represent a graph
G = (V,E):

as a collection of adjacency lists
as an adjacency matrix

Adjacency list representation
A graph can be represented as a array of |V| adjacency
lists, one for each vertex in V. the adjacency list
belonging to vertex u contains pointers to all vertex v
that are adjacent to u.
It has the disadvantage that there is no quicker way to
determine of an edge euv is part of a graph G than to
search in u’s adjacency list.
suitable for sparse graph.

Computer Representation of Graphs
Adjacency matrix representation

A graph is represented by a |V|×|V| matrix A. each
element aij of the matrix A has one of two possible
values: 1 if the edge eij exists and 0 otherwise.

It uses more memory space than adjacency list
representation.

suitable for dense graphs, or when the fast
determination of the existence of an edge is crucial.

Computer Representation of Graphs
Exercise:

Give an adjacency matrix representation and an
adjacency list representation of the task graph for the
previous exercise.

Topological Order
A topological order of a directed acyclic graph
G=(P,E) is a linear ordering of all its vertices such
that if E contains an edge euv, then u appears
before v in the ordering.

A directed graph G=(P,E) is acyclic if and only if
there exists a topological order of its vertices.

Algorithm Topological-Sort(G)
Execute DFS(G), Depth First Search, with the following addition:

Insert each vertex of G onto the front of a list L as soon as it is marked finished

Return L

Topological Order
Algorithm DFS(G)

for each vertex v in G do
if v not discovered then

DFS-Visit(v)
end if

End for

Algorithm DFS-Visit(u)
for each adjacent vertex v of u do

if v not discovered then
Mark v as discovered
DFS-Visit(v)

end if
end for
Mark u as finished

Topological Order
Topological order of a task graph is useful when
scheduling a task graph onto a single CPU, but is
not enough when scheduling a task graph onto a
parallel system.

Exercise:
Find a topological order for the task graph in the
previous execrise.

Task Scheduling
Here, statictask scheduling is addressed. Static
scheduling usually refers to the scheduling before
job execution, as opposed to dynamicscheduling,
where tasks are scheduled during job execution at
runtime.

Static scheduling is suitable for compilers to
schedule the machine instructions in a program
into parallel execution since the computation and
communication cost can be calculated.

Task Scheduling
The scheduling problem was introduced as the
spatial and temporal assignment of tasks to
processors.
The spatial assignment, or mapping, is the
allocation of tasks to the processors.

A processor allocation A of the task graph G =
(V,E,w,c) on a finite set P of processors is the processor
allocation function proc: V => P of the nodes of G to
the processors of P.

The temporal assignment is the attribution of a
start time to each task. However, it presupposes
the allocation of the tasks to processors and
therefore commonly both are defined by a
schedule.

Task Scheduling
A schedule S of the task graph G = (V,E,w,c) on a
finite set P of processors is the function pair
(ts,proc), where

ts: is the start time function of the nodes in G.

proc: is the processor allocation of the nodes of G to the
processors of P.

With Communication Costs
Target parallel system– classic model

A target parallel system P consists of a set of identical processors
connected by a communication network.

Dedicated system. The parallel system is dedicated to the
execution of the scheduled task graph. No other program or task is
executed on the system while the scheduled task graph is executed.

Dedicated processor. A processor can execute only one task at a
time and the execution is not preemptive.

Cost-free local communication. The cost of communication
between tasks executed on the same processor is negligible and
therefore considered zero.

Communication subsystem. Interprocessor communication is
performed by a dedicated communication subsystem. The
processors are not involved in communication.

With Communication Costs
Concurrent communication. Interprocessor communication in the
system is performed concurrently; there is no contention for
communication resources.

Fully connected. The communication network is fully connected.

Node finish time.
The finish time of a node is the node’s start time plus its execution
time (computation cost).

tf(n) = ts(n) + w(n)

Edge finish time.
The time at which a communication arrives at the destination
processor.

tf(eij, Psrc, Pdst) = tf(ni, Psrc) +
• 0 if Psrc = Pdst

• c(cij) otherwise

With Communication Costs
Condition 1: exclusive processor allocation

proc(ni) = proc(nj) �
• ts(ni) < tf(ni) <= ts(nj) < tf(nj)

• or ts(nj) < tf(nj) <= ts(ni) < tf(ni)

Condition 2: precedence constraint
ts(nj, P) >= tf(eij, proc(ni), P)

Feasible schedule
A schedule S is feasible if and only if all nodes n and
edges e in the graph comply with conditions 1 and 2.

With Communication Costs
Data ready time

tdr(nj, P) = max {tf(eij, proc(ni), P)} for all e*j
Data ready time constraint

ts(n, P) >= tdr(n,P)

Processor finish time
tf(P) = max {tf(n)} for all n where proc(n) = P

Schedule length
sl(S) = max{tf(n)} for all n in G

Used processors
Q = ∪proc(n) for all n in G
For any schedule S, |Q| <= |P|

Sequential time
Seq(G) = Σw(n) for all n in G
G’s execution time on one processor only.

With Communication Costs
Exercise:

A schedule example for the task graph in the previous
exercise.

Scheduling Complexity
Scheduling problem

Let G = (V,E,w,c) be a task graph and P a parallel
system. The scheduling problem is to determine a
feasible schedule S of minimal length sl for G on P.

The decision problem SCHED(G,P) associated
with the scheduling problem is as follows.

Is there a schedule S for G on P with length sl(S) <= T

SCHED(G,P) is NP-complete, even when |P| >=
|V|
sl(Sopt(P+1) <= sl(Sopt(P))

on systems with P processors, but may using less
processors in the schedule

Without Communication Costs
Target parallel system – cost-free communication

A target parallel system Pc0 consists of a set of identical
processors connected by a cost-free communication
network.

Edge finish time
tf(eij,Psrc, Pdst) = tf(ni)

Data ready time
tdr(nj) = max {tf(ni)} for all ni connecting to nj

Exercise:
A schedule example for the task graph in exercise 1.

Scheduling Complexity
SCHED-C0(G,Pc0) is NP-complete.

While in general the scheduling problem without
communication costs is NP-complete, it is
solvable in polynomial time for an unlimited
number of processors.

A simple algorithm to find an optimal schedule is
based on two ideas:

Each node is assigned to a distinct processor.

Each node starts execution as soon as possible.

Scheduling Complexity
Optimal scheduling algorithm:

Insert all n in G in topological order into sequential list L

for each ni in L do

DRT = 0

for each nj belonging to pred(ni) do

DRT = max{DRT,tf(nj)}

end for

ts(ni) = DRT

tf(ni) = ts(ni) + w(ni)

proc(ni) = Pi

end for

Scheduling Complexity
sl(Sq+1

opt) <= sl(Sq
opt), schedules using exactly q+1

or q processors.

The above relation is not valid when considering
communication costs.

An example of chain structure can illustrate this.

Task Graph Properties
Path length, len(p)

The length of a path p in G is the sum of the weights of its nodes
and edges.

Computation length, lenw(p)
The sum of the weights of the nodes in a path

Allocated path length, len(p,A)
The path length determined for a given processor allocation A.

Len(p) >= len(p,A) >= lenw(p)
Critical path

A critical path cp of a task graph G is a longest path in G.

The critical path gains its importance for scheduling from
the fact that its length is a lower bound for the schedule
length.

sl >= lenw(cpw)

Task Graph Properties
For cost-free communication and unlimited
processors, sl(Sopt) = lenw(cpw)

Node Levels
Let G=(V,E,w,c) be a task graph and n belong to
V.

Bottom level bl(n)of n is the length of the longest path
starting with n.
A path starting with n of length bl(n) is called a bottom
pathof n and denoted by pbl(n).
Top level tl(n)of n is the longest length path ending in
n, excluding w(n).
A path ending in n of length tl(n) + w(n) is called a top
pathof n and denoted by ptl(n).
Computation bottom level blw(n)
Computation top leveltlw(n)

pbl(n) ≠ pblw(n) and ptl(n) ≠ ptlw(n)

Level Bounds on Start Time
Let S be a schedule for task graph G=(V,E,w,c) on
system P. For each n belonging to V,

sl >= ts(n) + blw(n)

ts(n) >= tlw(n)

ptb(n) = ptl(n) ∪pbl(n)

len(ptb(n)) = tl(n) + bl(n)

Critical Path Length and Node Levels
Let G=(V,E,w,c) be a task graph. For any node
ncp,i of a critical path cp

len(cp) = tl(ncp,i) + bl(ncp,i)

bl(nsrc) = len(ptb(nsrc))

bl(ncp,1) = len(cp) >= bl(ni) for each ni in V
Consequently, a source node with the highest bottom
level of all nodes is the first node ncp,1 of a critical path
cp of G.

As-Soon/Late-as-Possible Start Times
ASAP(n) = tl(n)

ALAP(n) = len(cp) – bl(n)

ASAPw(n) = tlw(n)

ALAPw(n) =lenw(n) – blw(n)

Computing Levels and Critical Path

To compute node levels, the following recursive
definition of the levels is convenient. For a task graph
G=(V,E,w,c) and ni belonging to V,

)}()({)()(max
)(

nenn jij
succ

ii
blc

nn
wbl

ij

++=
∈

)}()()({)(max
)(

ennn jijj
pred

i
cwtl

nn
tl

ij

++=
∈

Computing Levels and Critical Path
Algorithm: compute bottom levels

Insert n of V in inverse topological order into sequential list L.

for each ni in L do

max �0; nblsucc(ni) �NULL

for each nj in succ(ni) do

if c(eij)+bl(nj) > max then

max � c(eij)+bl(nj); nblsucc(ni) � nj

end if

bl(ni) � w(ni) + max

end for

end for

Computing Levels and Critical Path
Algorithm: compute top levels

Insert n of V in topological order into sequential list L.

for each ni in L do

max �0; ntlpred(ni) �NULL

for each nj in pred(ni) do

if tl(n j)+w(nj)+c(eji) > max then

max � tl(nj)+w(nj)+c(eji) ; ntlpred(ni) � nj

end if

tl(ni) � max

end for

end for

Computing Levels and Critical Path
Observe that the top and bottom paths are also
computed with the presented algorithms.
Moreover, a critical path and its length are also
computed by the algorithm of computing bottom
levels.

It suffices to store a node with the highest bottom level
during the run of the algorithm.

The paths of node levels and the critical path are
in general not unique.

Granularity
Task graph granularity

Let G=(V,E,w,c) be a task graph. G’s granularity is

A task graph is said to be coarse grainedif g(G) >= 1

Coarse granularity is a desirable property of a task graph.

One objective of task scheduling is always to minimize the
cost of communication.

This is achieved by having as much local communication as possible.

Unfortunately, this objective conflicts with the other objective of
scheduling, namely, the distribution of the tasks among the processors.

Grain
Let G=(V,E,w,c) be a task graph. The grain of node ni in V is

)(

)(
)(

max
min

ec

nw
Gg

Ee

Vn

∈

∈=














=

∈∈

∈

∈∈

∈

)(

)(
,

)(

)(
min)(

max
min

max
min

)(,

)(

)(,

)(

e
n

e
n

n
jisuccE

jsucc

jipredE

jpred

i c
nne

w
nn

c
nne

w
nngrain

ijji

ij

ijji

ij

Granularity
Task graph weak granularity

Let G=(V,E,w,c) be a task graph. G’s weak granularity is

This definition of granularity is called weak granularity because
g(G) <= gweak(G)

)()(min
)()(,

ngrainG
nsuccnpredVn

weak
g

Φ≠∈
=

�

Granularity and Critical Paths

)(

)(
)()(

e
nng

ij

i
jweak c

w
grainG ≤≤

Relation between critical path and computation
critical path

Let G=(V,E,w,c) be a task graph, cp its critical path, and
cpw its computation critical path. The nodes of cp are
denoted by Vcp, where nlast is the last node of cp, and its
edges by Ecp. It holds that

)()
)(

1
1()(cpleng ww

weak
G

cplen +≤

Granularity and Critical Paths

proof

)()
)(

1
1()()

)(

1
1(

)()
)(

1
1()(

)(

1
)(

)(

)(
)(

)(

)(
)(

)()()(

cplengleng

gg

g
n

g
n

e

ww

weak

w

weak

n
weak

n
weak

n

n
weak

i

n
weak

i

n

ij
n

G
cp

G

V
nw

GV
nw

GV
nw

nV G

w

V
nw

Ee G

w

V
nw

Ee
c

V
nwcplen

cpcpcp

lastcpcpcpijcp

cpijcp

+≤+=

+=+≤

+=+≤

+=

∑∑∑

∑∑∑∑

∑∑

∈∈∈

−∈∈∈∈

∈∈

Communication to Computation Ratio
The measure of granularity considers extreme values and
consequently guarantees certain properties of a task graph.
However, the general scheduling behavior of a task graph is
not necessarily related to the granularity of the graph.

Let G=(V,E,w,c) be a task graph. G’s communication to
computation ratio is

Usually, a task graph is said to have high, medium, and low
communication for CCRs of about 10, 1, and 0.1,
respectively.

∑
∑

∈

∈=
Vn

Ee

nw

ec
GCCR

)(

)(
)(

Exercise
For the task graph in exercise 1, determine the
following:

1. Granularity g(G)

2. Weak granularity gweak(G)

3. Communication to computation ratio CCR(G)

Fundamental Heuristics for
Scheduling Task-Parallel Jobs

Two Fundamental Heuristics

List scheduling

Clustering

These two heuristics are classes or categories
rather than simple algorithms. Most of the
algorithms that have been proposed for task
scheduling fall into one of these two classes.

List Scheduling
In its simplest form, the first partof list scheduling
sorts the nodes of the task graph to be scheduled
according to a priority scheme, while respecting
the precedence constraints of the nodes—that is,
the resulting node list is in topological order.

In the second part, each node of the list is
successively scheduled to a processor chosen for
the node.

Usually, the chosen processor is the one that allows the
earliest start time of the node.

List Scheduling
Algorithm: simple list scheduling—static priorities
(G=(V,E,w,c), P)

1 Part:
Sort nodes in V into list L, according to priority scheme and
precedence constraints.

2. Parts:
for each n in L do

Choose a processor in P for n
Schedule n on P

end for

Each node is only scheduled once, that is, the start time
and the allocated processor are never changed in a latter
step of the algorithm. The partial schedules must be
feasible in order to achieve a feasible final schedule.

List Scheduling
Free node

Let G=(V,E,w,c) be a task graph, P a parallel system,
and Scur a partial feasible schedule for a subset of nodes
Vcur, included in V, on P. A node n in V is said to be
free if n is not in Vcur and ance(n) is included in Vcur.

In list scheduling, every node to be scheduled is
free, because the nodes are processed in
precedence order. Hence, by definition, at the time
a node is scheduled all ancestor nodes have
already been processed.

List Scheduling
End technique

Let G=(V,E,w,c) be a task graph, P a parallel system, and
Scur a partial feasible schedule for a subset of nodes Vcur,
included in V, on P. The start time of the free node n in V,
on a given processor P, is determined by

This determination of the start time is here called
“end technique”, as node n is scheduled at the end of
all other nodes scheduled on processor P.

)}(),,(max{),(PPnPn ttt fdrs
=

Start Time Minimization
Algorithm: schedule free node n on Earliest-Start-Time
Processor
Require: n is a free node
tmin �infinity; Pmin� NULL
for each P in P do

if tmin > max{tdr(n,P), tf(P)} then
tmin � max{tdr(n,P), tf(P)}; Pmin � P

end if
end for
ts(n)�tmin; proc(n)�Pmin

In the literature, list scheduling usually implies the above
start time minimization method.
An Example

Online Scheduling of Workflow
Applications in Cloud

Environment

Introduction

Cloud environments are an important
platform for running high-performance and
distributed applications. Many large-scale
scientific applications are usually constructed
as workflows due to large amounts of
interrelated computation and communication,

e.g., Montage and EMAN.

Scheduling workflow applications in parallel
systems is a great challenge.
It is an NP-complete problem.

Introduction (Cont.)
Many heuristic methods have been proposed
in the literature

Most of them deal with a single workflow at a
time.

In recent years, there are several heuristic
methods proposed to deal with concurrent
workflows or online workflows
They do not work with workflows composed of
data-parallel tasks.

In the following, we present an online
scheduling approach for mixed-parallel
workflows in cloud environments.

Introduction (Cont.)

The proposed approach was evaluated with a
series of simulation experiments.

We developed a simulator using discrete-event
based techniques for experiments.

A workflow is represented by direct acyclic graph
(DAG).

The cloud environment is assumed to consist of
several dispersed clusters, each containing a
specific amount of processors.

The results show that the proposed approach
delivers good performance under various
workloads.

Related Work
In the past years, most works dealing with
workflow scheduling were restricted to single
workflow application.
Recently, Zhao et al. in their work envisaged
a scenario that need to schedule multiple
workflow applications at the same time. They
proposed two approaches:
The composition approach merges multiple
workflows into a single workflow first. Then, list
scheduling heuristic methods, such as HEFT, can
be used to schedule the merged workflow.
The main idea of the fairness approach is that
when a task completes, it will re-calculate the
slowdown value of each workflow against other
workflows and make a decision on which workflow
should be considered next.

Related Work (Cont.)
The composition and the fairness approaches
are static algorithms and not feasible to deal
with online workflow applications,
i.e. multiple workflows come at different time
instants.

Later, RANK_HYBD is proposed to deal with
online workflow applications submitted by
different users at different times. The task
scheduling approach of RANK_HYBD sorts the
tasks in waiting queue using the following
rules repeatedly.

Related Work (Cont.)
If tasks in waiting queue come from multiple
workflows, the tasks are sorted in ascending order
of their rank value (ranku) where ranku has the
same definition as in HEFT;

If all tasks belong to the same workflow, the tasks
are sorted in descending order of their rank value
(ranku).

However, in the above approaches, the
number of processors to be used by each
task is limited to a single processor. It is not
feasible to deal with workflows composed of
data-parallel tasks.

Related Work (Cont.)
N'takpe' et al. proposed a scheduling
approach for mixed parallel applications on
Heterogeneous platforms.

However, their approach is restricted to
concurrent workflows submitted at the same time.
It is infeasible to deal with online workflows
submitted at different time instants.

The OWM proposed in the following is
designed to deal with multiple online mixed-
parallel workflows that previous methods
cannot handle well.

Online Workflow Management

Online Workflow Management (Cont.)
In OWM, there are four steps:

Critical Path Workflow Scheduling (CPWS). When
a new workflow arrives, CPWS is adopted to
calculate ranku of each task in the workflow and
sort the tasks in descending order of ranku into a
list. During the workflow’s execution, according to
the order in each critical path list, CPWS
continuously submits the ready tasks in the list
into the waiting queue until running into an
unready task.

An example of CPWS

Online Workflow Management (Cont.)

Task Scheduling. This step adopts the
RANK_HYBD method.

Multi-processor task rearrangement. It improves
processor utilization by applying techniques such
as first fit, easy backfilling, and conservative
backfilling scheduling approaches.

Online Workflow Management (Cont.)
Adaptive Allocation (AA). When the number of
clusters that can accommodate the first task in
queue is 1, it first finds the cluster with the
earliest estimated available time among other
clusters. If the estimated finish time of the first
task on that cluster is earlier than that on the free
cluster, the task will be kept in the waiting queue.
Otherwise, the system allocates the task to the
free cluster right away.

Experimental Results

The performance metrics used in the
following experiments include:

Makespan. The time between submission and
completion of a workflow.

Schedule Length Ratio (SLR).

win (%). The win value of an algorithm means the
percentage of the workflows that have the
shortest makespan when applying this algorithm.

In the following experiments, we compare
OWM with two other approaches:
RANK_HYBD and Fairness_Dynamic.

Experimental Results (Cont.)
To experiment with different workload
characteristics, we use the following
parameters to generate different types of
workflows. A workflow is represented as a
Directed Acyclic Graph (DAG).

Node={20, 40, 60, 80, 100}

Shape={0.5, 1.0, 2.0}

OutDegree={1, 2, 3, 4, 5}

CCR={0.1, 0.5, 1.0, 1.5, 2.0}

BRange={0.1, 0.25, 0.5, 0.75, 1.0}

WDAG=100~1000
• [7] Topcuoglu, H., Hariri, S., and Wu, M. Y., “Performance-Effective and

Low-Complexity Task Scheduling for Heterogeneous Computing”. IEEE
Transactions on Parallel and Distributed Systems, 2(13):260-247, 2002.

Experimental Results (Cont.)
The values of the parameters are randomly
selected from the corresponding sets given
above for each DAG. The arrival interval
value between DAGs is set based on Poisson
distribution. Each experiment involves 20
runs, and each run has 100 unique DAGs in a
grid environment that contains 3 clusters
each containing 30~50 processors
respectively.

We experimented with both a uniform
distribution and an exponential distribution
for tasks’ computation cost.

Summary
Most existing workflow scheduling algorithms
are restricted to handle only one single
workflow. There are few researches for
scheduling multiple or online workflows. In
the above, we propose an online workflow
management (OWM) approach for
scheduling multiple online mixed-parallel
workflows in a grid environment.
Our experiments show that OWM
outperforms other methods in terms of
average makesapn, average SLR and win (%)
under different workloads.

Thank You!

