!'_ Distributed File Systems

Chien-Min Wang
| nstitute of Information Science
Academia Sinica

i Contents

File System Overview

N

N

N

N

Distri
Distri
Distri

putec
putec

putec

e Systems: |ssues
e Systems: Case Studies
e Systems for Clouds

Lecture 1

!'_ File System Overview

i Outline

n Files and Directories
n Implementation | ssues
n Example File Systems

i Why file systems?

n The data must survive after the termination
of the process using Iit.

n It must be possible to store very large
amount of data.

n Multiple processes must be able to access
data concurrently.

d Solution 1sto store those data in units called
files on disks and other media.

i Files; an abstraction

n A (potentially) large amount of datathat livesa
(potentially) very long time.

1 Often much larger than the memory of the computer.
1 Often much longer than any computation.
1 Sometimes longer than life of the machine itself.
n (Usually) organized as alinear array of bytesor
blocks.
1 Internal structure isimposed by applications.
1 (Occasionally) blocks may be variable length.

n (Often) requiring concurrent access by multiple
Processes

1 Even by processes on different machines!

i File Systems

n Files are managed by the Operating System.

n The part of the Operating System that dealt
with filesis known as the File System.

1 A fileisacollection of disk blocks.

1 FHle System maps file names and offsets to disk
blocks.
n How files are structured, used, protected

and implemented are major concerns of file
systems.

i Files: Naming,

n The exact rules of naming depend on the
operating system.
n However, most of them allow filesto be
1 1 - 8 characters
1 Digits and several special symbols
1 Modern ones support up to 255 characters

n Some file systems are case sensitive.
1 DOS, Windows. Case insensitive
1 UNILX, Linux: Case sensitive

i Files: Naming,

n Many operating systems support two-part
file names.

1 Parts are separated by a period (.)
1 Format: <file name>.<extension>
1 Extension indicates something about the file.
n Not all operation systems are aware of
extensions.
1 Unix or Linux does not depends on extensions.

1 But some applications may depend on
extensions.

i Files. Types

n 2 Maor types

1 Regular files— ones that contain user data. These can be
either text (ASCII) or binary.

1 Directories— are special system files which are used to
maintain the structure of the file system.

n InuUnix, it aso has

1 Character files— are used to mode! serial 1/0 devices
such as terminals and printers
/dev/tty, /dev/lIp, /dev/net

1 Block files— are used to model disks
/dev/hdl, /dev/hd2

10

i Files; Attributes

n A fileincludes a sat of other characteristics than
just name and extension

n Some common attributes
1 Owner — current owner of thefile
1 Creator — the person who creates the file
1 Protection — who can access and who can’t access
1 Size— length of the file in number of bytes
1 Read-only flag — can it be modified or not
1 Hidden flag — display or not when listed
1 Archive flag — to be backup or not
1 Last modified date, created date, etc.

11

i Files; Access

n Sequential Access
1 Read all the data starting from the beginning
1 Used in early days with magnetic tapes
1 Example: simple text files

n Random Access

1 Canread thedatain afile out of order

1 Were possible with the introduction of
magnetic disks

1 Example: Data bases, movies

12

i Files. Operations,

n File systems allow operations to store and retrieve
datafrom files

1 Create — create anew file with no data and set initial
attributes

1 Delete — remove the file from system and free up disk
Space

1 Open — gain accessto afile
1 Read — return a sequence of bytes from afile

1 Write — replace a sequence of bytesin afile and/or
append to the end

1 Close - relinquish accessto afile

13

i Files: Operations,

1 Seek — reposition file pointer for subsequent reads and
writes, used in random access

1 Get attributes — get the attributes of afile
1 Set attributes — set the attributes of afile
1 Rename - change the name or the extension of afile

14

i Directories

n Used to organize or keep track of files.

n Are aso caled folders.
1 DOS, UNIX and Linux call them as directories.
1 Windows call them asfolders.

n Most operating systems consider directories
asfiles.

15

* Directories: Single Level System

n Simplest form of directory system where asingle
directory contain all thefiles

n Thissingle directory is called the root.

n Problem — in a multi-user system, it can’t have
files with the same name

16

i Directories: Two Level System

n To avoid the conflict, each user Is given a separate
directory.

Root

Jerry Alex

17

i Directories. Hierarchical Structure

n Two level directory structure is not enough when
users want to manage their own files.

n Almost all the commercial operating systems
support multiple directory levels.

n However, CD-ROM file system hasalimit in
number of levelsin the hierarchy.

1 8levels, including the root directory, in the 1SO
9660 file system.

18

Root

Alex

-] @
L1.ppt QE{E%§> L3.ppt

i Directory Considerations

n Efficiency — locating afile quickly.
n Naming — convenient to users.

1 Separate users can use the same name for
separate files.

1 The samefile can have different names for
different users.

1 Names need only be unigue within a directory
n Grouping — logical grouping of files by
properties
1 e.g., al Javaprograms, all games, ...

20

i Directories. Operations

n Create — create anew directory

n Delete — delete an existing directory

n List — enumerate directory entries

n Lookup — find an existing entry

n Rename — change the name of the directory

n Link — allow filesto appear in more than
one directories, related to file sharing.

21

i Directories. Path Name,

n When files are in adirectory tree, there should be
a mechanism to name them.

n Absolute path names
1 Path from the root to the directory
/Tom/DFS/L1 . ppt
n Relative path names
1 Relative to the current working directory

v If currently in /Tom/DFS directory, the path name is
L1.ppt

1 If currently in /Tom directory, the path name s
DFS/L1.ppt

22

i Directories. Path Name,

n Regardless of the current working directory,
absol ute path names will always work.

n There aretwo special entriesin each directory
1 . (dot) — refersto the current working directory
1 .. (double dot/dotdot) — refers to the parent directory

1 Examples: If currently in /Tom directory
./DFS/L1 _ppt
../Jerry/cal .exe

23

Path Name Trandation

n Assume that | want to open “/home/lauer/foo.c”

fd = open(™/ hone/l auer/foo.c”, O RDWR),;
1 Opensdirectory »/ ” — theroot directory isin aknown place on
disk
1 Search root directory for the directory home and get its location
1 Open hone and search for the directory | auer and get itslocation
1 Openl auer and search for thefilef oo. ¢ and get itslocation
1 Openthefilef oo.c

1 The process needs the appropriate permissions at every step.
n It spendsalot of time walking down directory paths.
1 Thisiswhy open calls are separate from other file operations.

1 File System attempts to cache prefix lookups to speed up common
searches.

1 Once open, file system caches the metadata of thefile.

24

i Outline

n Files and Directories
n Implementation | ssues
n Example File Systems

25

i |mplementation of Files

n Flles are stored as blocks on the disk.

n Need to keep track of where afileislocated on the
disks.

1 Map file abstraction to physical disk blocks.

n Goals
1 Efficient in time, space, use of disk resources
1 Fast enough for application requirements

1 Scalableto awide variety of file sizes
o Many small files (< 1 page)
u Huge files (100’s of gigabytes, terabytes, spanning disks)
u Everything in between

26

i File Allocation Schemes

n Contiguous
1 Blocks of file stored in consecutive disk sectors
1 Directory pointsto first entry

n Linked
1 Blocks of file scattered across disk, as linked list
1 Directory pointsto first entry

n Indexed

1 Separate index blocks contain pointersto file blocks
1 Directory points to index blocks

27

i Contiguous Allocation

n ldeal for large and static files
1 Static Databases, OS code

1 Multi-mediavideo and audio
1 CD-ROM, DVD-ROM

n Simple address calculation

1 Directory entry pointsto first block
1 Fileblock i U disk block address

n Fast multi-block reads and writes
1 Minimize seeks between blocks

28

Contiguoudly Allocated Files

N directory
i _
count file start length
EEI 2 | 3[] count O)
f tr 14 3
4] sl el]7L] mail 19 6
8] ol J1o[_111[] list 28 4
tr f 6 2
12[]13[14115]
16 J17[]18[119[]
mail
20121 J22[]23[]
24[25 J26[127[]
list
a2 el en
- 7T

i Contiguous Allocation: File Creation

n Search for an empty sequence of blocks
1 First-fit
1 Best-fit

n Proneto fragmentation when ...

1 Filescome and go
u For example, anew file needs 7 contiguous blocks.

1 Fileschange size
u For example, the file tr changes its size to 6 blocks.

30

i Contiguous Allocation — Extents

n Extent: acontiguoudly allocated subset of afile

n Directory entry pointsto
1 (For file with one extent) the extent itself

1 (For file with multiple extents) pointer to an extent
block describing multiple extents

n Advantages
1 Speed, ease of address calculation of contiguous file
1 Avoids (some of) the fragmentation issues
1 Can be adapted to support files across multiple disks

31

i Contiguous Allocation — Extents

n Disadvantages

1 Too many extents b degenerates to indexed allocation
u Asin Unix-like systems, but not so well

n Popular in 1960s & 70s
n Currently used for large filesin NTFS
n Rarely mentioned in textbooks

32

Linked Allocation

N

n

N

N

Blocks scattered
across disk

Each block contains
pointer to next block

Directory pointsto
first and last blocks

Block header:

1 Pointer to next block

1 1D and block number
of thefile

directory

file
jeep

start end
9 25

181?|:|18[|‘|9D

205212[|235
24 J2sF1l26] 27]

28 29[130 531]

.

33

i Linked Allocation

n Advantages
1 No space fragmentation!
1 Easy to create and extend files
1 |dedl for lots of small files

n Disadvantages
1 Lots of disk arm movement
1 Space taken up by links
1 Sequential access only!

34

i Linked Allocation — FAT

n Instead of link on each
block, put al linksin
one table

1 the File Allocation
Table—1.e., FAT
n One entry per physical
block In disk

1 Directory pointsto first
& last blocks of file

1 Each block pointsto
next block (or EOF)

directory entry

tast | eee

| 217 —

name

start block

— 217

339

618

no. of disk blocks —1

618

339

FAT

35

i FAT File Systems

n Advantages
1 Advantages of Linked File System
1 FAT can be cached in memory
1 Searchable at CPU speeds, pseudo-random access

n Disadvantages
1 Limited size, not suitable for very large disks

1 FAT cache describes entire disk, not just open files!
1 Not fast enough for large databases

n Used in MS-DOS, early Windows systems

36

i Indexed Allocation

n 1-node:
1 Part of file metadata
1 Data structure liststhe
address of each block
of afile
n Advantages
1 Truerandom access

1 Only i-nodes of open
files need to be cached

1 Supports small and
large files

o] 11 21 3]

4[] 5[] 7]
s o 1o Y110

12 s a5

16

20 2122 A3]

24)25 |26 127[]
28 29[130 131[]

directory
file index block
jeep 190

SRR e S

37

i Unix/Linux i-nodes

n Direct blocks: Ll
Pointersto first n timestamps (3
I blocks size block‘::{}in)t | data |
n Sngleindirect table:
1 Extrablock containing | :
. direct blocks 7 .
pointers to blocks]
A 1 - m single indirect ——>E R * data
n Doubleindirect table: e =—@m i e
1 Extrablock containing || tirle indirect b= o[data_
single indirect blocks sl o[data

38

i Indexed Allocation

n Accessto every block of fileisviai-node

n Disadvantage

1 Not asfast as contiguous allocation for large
databases

u Requires reference to i-node for every access
VS.

u Simple calculation of file block to disk block
address

39

i Free Block M anagement

n Bitmap
1 Very compact on disk
1 Expensive to search
1 Supports contiguous allocation

n Freelist

1 Linked list of free blocks
u Each block contains pointer to next free block

1 Only head of list needs to be cached in memory
1 Very fast to search and allocate
1 Contiguous allocation vary difficult

40

Free Block Management: Bit Vector

01 2 n-1
0 o0b block[j free
bit[i] =N
© 1 P block[i] occupied

Free block number calculation
(number of bits per word) *

(number of 0-value words) +
offset of first 1 bit

41

i Free Block Management: Bit Vector

n BIt map
1 Must be kept both in memory and on disk
1 Copy In memory and disk may differ

1 Cannot allow for block[i] to have a situation
where bit[i1] =1 in memory and bit[i] =0 on
disk.

1 How about bit[i] = 0in memory and bit[i] =1
on disk?Isit ok?

42

i Free Block Management: Bit Vector

n Solution:

Set bit[i] =1 ondisk

Allocate block]i]

Set bit[i] = 1 in memory

Similarly for set of contiguous blocks

n Potential for lost blocks in event of crash!
1 Discussion — How do we solve this problem?

43

i Free Block Management: Linked List

n

Linked list of free blocks
1 Not in order!

Cachefirst few free blocks in
memory

Head of list must be stored
both

1 Ondisk

1 Inmemory

Each block must be written to
disk when freed

Potential for losing blocks?

free-space list head

24 125[|26 |27 %

28 J29[J30[131[]

N

44

i Bad Block M anagement

n Bad blocks on disks are inevitable
1 Part of manufacturing process (less than 1%)
1 Most are detected during formatting
1 Occasionally, blocks become bad during operation

n Manufacturerstypically add extratracks to disks
1 Physical capacity = (1 + x) * rated capacity
n Who handles bad blocks?

1 Disk controller: Bad block list maintained internally
o Automatically substitutes good blocks

1 Formatter: Re-organize track to avoid bad blocks

0 OsSe:d Bad block list maintained by OS, bad blocks never
u

45

Bad Block Management In
Contiguous Allocation File Systems

n Bad blocks must be conceal ed

u Foul up the block-to-sector calculation

n Methods

u Look-aside list of bad sectors
Check each sector request against hash table
If present, substitute a replacement sector behind the scenes

u Spare sectors in each track, remapped by formatting

n Handling

u Disk controller, invisible to OS

u Lower levelsof OS; invisible to most of file system or
application

46

Bad Block Management In
i Linked and FAT Systems

n 1IN OS.— format all sectors of disk

1 Don’t reserve any spare sectors
n Allocate bad blocks to a hidden file for the

purpose

1 I ablock becomes bad, append to the hidden file
n Advantages

1 Vay smple

1 No look-aside or sector remapping needed

1 Totally transparent without any hidden mechanism

47

i |mplementation of Directories

n A list of [name, information] pairs
1 Must be scalable from very few entries to very many

n Name:
1 User-friendly, variable length
1 Any language
1 Fast access by name
n Information:
File metadata (itself)
Pointer to file metadata block (or i-node) on disk
Pointer to first & last blocks of file
Pointer to extent block(s)

48

i Very Simple Directory

namel |

attributes

name2 |

attributes

name3

attributes

attributes

name4

n Short, fixed length names
n Attribute & disk addresses contained in directory

n MSDOS, etc.

49

Simple Directory
i namel —— -

rame2. > irnode
name3

named
_ Data structures
n Short, fixed length names containing attributes

n Attributes in separate blocks (e.g., i-nodes)
1 Attribute pointers are disk addresses (or i-node numbers)

n Older Unix versions, MS-DOS, etc.

50

i More Interesting Directory

’ attributes

- attributes

| dtributes

\ attributes

[

i r1\an§1\‘l onger_na

%ay_l ong n
al namez2 ...

n

n

n

N

Variable length file names
1 Stored in heap at end

Modern Unix, Windows

Linear or logarithmic
search for name

Compaction needed after
1 Deletion, Rename

o1

i Very Large Directories

n Hash-table implementation

n Each hash chain like a small directory with
variable-length names

n Must be sorted for listing

52

i Outline

n Files and Directories
n Implementation | ssues
n Example File Systems

53

i Scalability of File Systems

N

n

N

N

Question: How large can afile be?

Answer: limited by
1 Number of bitsinlength field in file metadata
1 Size & number of block entriesin FAT or i-node

Question: How large can file system be?
Answer: limited by

1 Number of bitsinlength field in file system metadata

1 Size & number of block entriesin FAT or 1-node

54

i MS-DOS & Windows

n FAT-12 (primarily on floppy disks):
1 4096 512-byte blocks
1 Only 4086 blocks usablée!

n FAT-16 (early hard drives):

1 64 K blocks; block sizesup to 32 K bytes

1 2 GBytes max per partition, 4 partitions per disk
n FAT-32 (Windows 95)

1 228 blocks; up to 2 TBytes per disk
1 Max size FAT requires 232 bytesin RAM!

55

MS-DOS File System

Block size | FAT-12 | FAT-16 | FAT-32
0.5 KB 2 MB
1 KB 4 MB
2 KB 8 MB 128 MB
4 KB 16 MB 256 MB 1 1B
8 KB 512 MB 2 1B
16 KB 1024 MB 2 1B
32 KB 2048 MB 2 1B

n Maximum partition for different block sizes
n The empty boxes represent forbidden combinations

56

i System V File System

n Thefilesystem resideson asinglelogical disk or
partition

n A partition can be viewed as alinear array of
blocks

1 block represents the granularity of space allocation for
files

1 adisk block is512 bytes* some power of 2

1 physical block number identifies a block on agiven
disk partition

1 physical block number can be trandated into physical
location on a partition

o7

i System V: File System Layout

B |S linodelist | datablocks

n Boot area
1 Code required to bootstrap the operating system

n Superblock
1 Attributes and metadata of the file system itself

n Inodelist
1 alinear array of inodes

n datablocks
1 data blocks for files and directories, and indirect blocks

58

i System V: Superblock

n One Superblock per file system

n |t contains metadata about file system
1 Sizein blocks of the file system
1 Sizein blocks of the inode list
1 Number of free blocks and inodes

Free block list

1 Freeinode list

n Thekernedl reads the superblock and stores
It In memory when mounting the file system

99

i System V: Inode

n Each file has an unigue inode associated
with it.
n Inode contains metadata of thefile.

n On-disk inode refersto inode stored in disk
within the inode list.

n In-coreinode refersto inode stored In
memory when afile is open.

60

i System V: On-disk inode

n The size of on-disk inode is 64 bytes

Field Size Description
di_mode 2 |Fletype, permissions
di_uid 2 |Owner UID
d_gid 2 |Owner GID
d_size 4 | Sizein bytes
di_addr 39 |Array of block addresses

61

i System V: On-disk inode

n Unix files are not stored in contiguous blocks.

n File system need to maintain a map of the disk
location of every

©CO~NOUPWNEO

nlock of the file.

T

indirect

Double indirect’]

/
7
\i

NI
\
X

b
\

triple indirect -

62

i System V: In-core inode

n It contains all the fields of on-disk inode,
and some additional fields, such as

1 The status of the in-core inode (whether the
Inode Is locked, which processiswaiting, €tc.)

Thelogical device number containing the file
The inode number of thefile

Pointersto keep t
Pointersto keep t
Block number of

ne inode on afreelist
ne Inode on a hash queue.

ast block read.

63

i System V: Inode Operations

n Inode lookup: lookuppn()& sblookup()

1 trangdlates a pathname and returns a pointer to
the vnode of the desired file

n dlocate inode: iget()

1 read an inode from disk into memory by inode
number or initialize an empty inode if not
found

n release inode: iput()

1 kernal writes the inode to disk if the in-core
copy differs from the disk copy

64

i System V: File Operations

n

N

n

Read and write system calls use the following
arguments

1 File descriptor, user buffer address, count of number of
byte transferred

Offset Is obtained from the opened file object

Offset Is advanced to the number of byte
transferred

For random 1/0 “lseek” 1s used to set the offset to
desired location

Kernel verifies the file mode and puts an exclusive
ock on the inode for serialized access

~lle read: sbread()

65

i System V: Directories

n A file system is organized as a hierarchy of
directories.

n It starts from a single directory called root
(represented by a/).

n A directory isafile containing list of files and
subdirectories.

n It hasfixed size records of 16 bytes, each which
contains
1 al4-byte filename

1 a2-byteinode number (216 = 65536 files), actsas a
pointer to where the system can find info about the file.

66

i System V: Directories

n 0 1node number means the file no longer exists.

n Thedirectory itself and its parent directory arein
the first two entries.

73

38 .

9 Flel

0 Deleted file

110 Subdirectoryl
65 File2

67

i System V: Summary

n Simple design
n Single superblock can be corrupted

n Grouping of inode In the beginning requires
long seek time between inode read and file
aCcCess

n Fixed block size wastes space
n Filenameislimited to 14 characters
n Number of inodes are limited to 65535

68

i The ext2 File System

n The Second Extended File system was
devised (by Rémy Card) as an extensible
and powerful file system for Linux.

n It 1saso the most successful file system so

far in the Linux community and is the basis
for al of the currently shipping distributions.

n Dueto this, it is extremely well integrated
Into the kernel, with good performance
enhancements.

69

* Ext2: File System Layout

SUPER BLOCK FS BLOCK INODE INODE DATA BLOCKS
DESCRIPTOR BITMAP BITMAP TABLE

70

i Ext2: File System Layout

n The Boot Sector block is optional, not required if
you do not want to make this partition bootable.

n Each block group contains

1 aredundant copy of crucial file system control
Information (superblock and the file system descriptors)

1 apart of the file system (a block bitmap, an inode
bitmap, a piece of the inode table, and data blocks)

n Having multiple block groups helps improves
reliability (since backups of the superblock are
there) and even speeds up access as the inode table
IS near the data blocks — reduced seek time for
data blocks.

71

i Ext2: Block Group

n Superblock — The file system header, identifies the
file system and provides relevant information.

n FSdescriptor — Pointers to the bitmaps and table
In the block group.

n Block bitmap — Block usage information, tells
which blocks in the block group are empty or used
n Inode bitmap — Inode usage information

n Inode table — Table of the inodes. Each inode
orovides information about afile.

n Datablocks— blocks where the data is stored!

72

i Ext2: Superblock

n The Superblock contains a description of the basic
size and shape of thisfile system.

n System keeps multiple copies of the Superblock in
many Block Groups.

n It holds the following information :

@ . Oxef53 for the current implementation.

) . for checking compatibility

) . to ensure
that the file system is periodically checked

@ . The Block Group that holds this

copy of Superblock.

73

i Ext2: Superblock

%) . size of blocks for the file system in bytes.

@ : Number of blocksin agroup —
fixed when file system is created.

) . Number of free blocks in the system —
excludes the blocks reserved for root

@ : Number of free Inodes in the system —
again excludes inodes reserved for root

] . Thefirst Inode inan EXT2 root file system

would be the directory entry for the /' directory.

74

i Ext2: FS Descriptor

n The FS Descriptor contains the following:

& : block number of block allocation
bitmap

%) : block number of Inode allocation
bitmap

@ . The block number of the starting block
for the Inode table for this Block Group.

%) : humber of free data blocksin the
Group

) . number of free inodes in the Group

%) : humber of inodes allocated to

directories

75

* Ext2: Inode

i Ext2: Inode

n . Pointers to the blocks that
contain the data that this Inode is describing.

n . The time that this Inode was created
and the last time that it was modified.

n . The size of thisfilein bytes.

n . This stores user and group identifiers
of the owners of thisfile or directory

n . This holds two pieces of information; what

this inode describes and the permissions that users
have on it.

77

78

nount -t type devi ce pat hnane

n Attach device (which contains afile system of
type type) to the directory at pathname

1 File system implementation for type gets loaded and
connected to the device

1 Anything previously below pathname becomes hidden
until the device is un-mounted again

1 Theroot of the file system on device is now accessed
as pathname

n Eg,
nmount -t 1s09660 /dev/cdrom /nyCD

79

i Mounting

OS automatically mounts devices in mount table

N

N

N

N

at initialization time

1 /etc/fstab in Linux
Users or applications may mount devices at run
time, explicitly or implicitly — e.g.,

1 Insert afloppy disk

1 PluginaUSB flash drive

Type may be implicit in device
Windows equivalent
1 Map drive

80

i Virtual File Systems

n Virtual File Systems (VFS) provide object-
oriented way of implementing file systems.

n VFS allows same system call interface to be
used for different types of file systems.

n The APl iIsto the VFS interface, rather than
any specific type of file system.

n Mounting: formal mechanism for attaching
afile system to the Virtual File interface.

81

i VES. Schematic View

file-system interface

|

VES interface

v

local file system
type 1

Y

local file system
type 2

Y

remote file system
type 1

network

82

i Linux Virtual File System

n A generic file system interface provided by
the kernel

n Common object framework
1 superblock: a specific, mounted file system
1 1-node object: a specific file in storage
1 d-entry object: adirectory entry

1 file object: an open file associated with a
pProcess

83

i Linux Virtual File System

n VFS operations
1 Super_operations:
u read inode, sync fs, etc.
1 INode _operations:
u create, link, etc.
1 d_entry _operations:
u d_compare, d delete, etc.
1 file_operations:
u read, write, seek, etc.

84

i Linux Virtual File System

n Individual file system implementations
conform to this architecture.

n May belinked to kernel or loaded as
modules

n Linux kernel 2.6 supports over 50 file
systems in official version

1 E.Q., minix, ext, ext2, ext3, 1s09660, msdos, nfs,
smb, ...

85

