

Hadoop – A platform for Grid Computing

Devaraj Das Grid Computing, Yahoo! Bangalore

What is this talk about

- The challenge of large scale data processing
- Grid computing as a solution
- Components of a Grid
- Introduction to Hadoop
- Hadoop ecosystem

The Challenge: Very large scale data processing

Internet Scale Generates BigData

- Yahoo is the most Visited
 Site on the Internet
 - 600M+ Unique Visitors per Month
 - Billions of Page Views per Day
 - Billions of Searches per Month
 - Billions of Emails per Month
 - IMs, Address Books, Buddy Lists, ...
 - Terabytes of Data per Day!
- And we crawl the Web
 - 100+ Billion Pages
 - 5+ Trillion Links
 - Petabytes of data

...terabytes, 100s of terabytes, petabytes, 10s of petabytes...

A huge amount of work is needed to process that data...

- Search queries
 - Searching on billions of docs
- Ads and Display
 - Figure out what ads to show, based on user preferences, demographic and geographic data
 - Customize content
 - Model ad performance and query patterns
 - Trace user activity to discover short- and long-term behavioral trends
 - Personalize pages via models (e.g., MyYahoo)

How to Process BigData?

- Remember, we're dealing with 100s of terabytes.
- Just reading 100 terabytes of data can be overwhelming
 - On a standard computer (100 MBPS):
 - ~11 days
 - Across a 10Gbit link (very high end storage solution):
 - 1 day
 - On 1000 standard computers:
 - 15 minutes!

A little detour – getting the most out of computers

- Parallel computing:
 - vector processing (SIMD)
 - multiple cores/processors
 - thread-based parallelism
 - Problems: physical limits, heat, power
- Massively parallel processing
 - Lots of networked processors
 - bandwidth becomes a problem
 - HW is expensive
- Distributed/grid/cloud/utility:
 - Lots of networked machines
 - Usually, commodity machines

Yahoo!'s approach: Grid computing

- 1000s of commodity machines
 - no special hardware, storage
- Software layer (Hadoop); this is the hard part
- Similar model deployed by many others: Google, Amazon, IBM.

What is hard in Grid Computing

- Reliability problems: in large clusters, computers fail every day, and in different ways
 - For a single machine: MTBF is ~3 years
 - On 1000 machines, MTBF is ~1 day
 - Data is corrupted or lost (disk, memory, network)
 - Computations are disrupted
- Without a good framework, programming clusters is very hard
 - newer programming paradigms? languages?
 - Traditional debugging and performance tools don't apply

What is hard in Grid Computing

- Storage
 - how do I store petabytes of data, reliably?
 - How is data available to all machines?
- Resource management / scheduling
 - How are multiple jobs run?
 - How do I make sure all resources are utilized
- Others (communication, security, monitoring, etc) on a much larger scale

- Our challenge is large scale data processing (petabytes of data)
- We use grids/clusters of thousands of networked commodity machines
- Hadoop is the software that ties this together (more later)
- Lots of hard problems, made harder by scale and heterogeneous machines

- The challenge of large scale data processing
- Grid computing as a solution
- Components of a Grid
- Introduction to Hadoop
- Hadoop ecosystem

Yahoo! Inc.

12

Programming on the Grid

- So we have 100s of machines available to us. How do we write applications on them?
- As an example, consider the problem of creating an index for search.
 - I have hundreds of documents
 - I want to build an index so I can search on them
 - I really want to build an inverted index (a map of words to their location)
 - I have a few machines at my disposal

The problem: inverted index

Farmer1 has the following animals: bees, cows, goats.
Some other animals ...

Animals: 1, 2, 3, 4, 12
Bees: 1, 2, 23, 34
Dog: 3,9
Farmer1: 1, 7
...

Building an inverted index

This is Map-Reduce

- General form:
 - Map: (K1, V1) → list(K2, V2)
 - Reduce: (K2, list(V2)) → list(K3, V3)
- In our example
 - Map: (doc#, word) → [(word, doc-num)]
 - Reduce: (word, [doc1, doc3, ...]) \rightarrow [(word, "doc1, doc3, ...")]

Mapping our example to Map-Reduce

Map-Reduce on a larger scale

- Take the previous example and expand it
 - billions of web pages
 - index can reach a few petabytes
 - Thousands of machines
 - Run multiple jobs/programs
- We need a platform that can let us do this. What should the platform support?

Grid components

- Storage (file system)
 - highly available (machines can fail)
 - replicated (large amounts of data, can't store copies on every machine)
 - data consistency (due to replication)
- Framework (Map-Reduce)
 - user should just say where the data is, how to split it, and what to do with each data set
 - Framework should start/stop tasks, move data/computation, manage execution

Grid components

- Communication / data exchange
 - Serialize/deserialize data (into files, across networks) in a generic manner
 - Language/OS neutral.
 - What transport mechanism? Sockets?
- Provisioning
 - To utilize machines, we need to run many applications. How do we share resources across many apps?
- Monitoring
 - error detection, logging, etc

- We saw an example of Map-Reduce
- What do we need in a Grid:
 - Storage
 - Programming model (Map-Reduce)
 - Communication
 - Provisioning
 - Monitoring, error handling

Agenda

- The challenge of large scale data processing
- Grid computing as a solution
- Components of a Grid
- Introduction to Hadoop
- Hadoop ecosystem

- <u>Framework</u> for running applications on <u>large clusters</u> built of <u>commodity hardware</u>
- Lets one easily write and run applications that process vast amounts of data (petabytes).
- Distributed File System
 - Modeled on GFS
- Distributed Processing Framework
 - Using Map-Reduce metaphor
- Scheduler/Resource Management

- Completely Open Source
 - Top level Apache project
- Written in Java
 - Runs on Linux, Mac OS/X, Windows, and Solaris
 - Commodity hardware
 - Client apps can be written in various languages

Apache Hadoop – Open Source

The Apache Software Foundation http://www.apache.org/

- Multi-Organization Development Community
 - Yahoo! is primary contributor so far
 - Bangalore team drives Map-Reduce and Scheduling work
 - Also IBM, Amazon, Facebook, Powerset, ...
 - And various independent programmers
- Anyone can use Hadoop, for free!
 - 33+ organization have registered their Hadoop usage / clusters
 - Hadoop is used in Universities on several continents
 - We've started hiring employees with Hadoop experience!
- Anyone can enhance Hadoop!
 - Fix a bug, submit a test case, write some docs, starting is easy
 - Publish a new Hadoop application or two
 - Hadoop's direction is determined by those who invest in it

Hadoop Job

Y Agenda

- The challenge of large scale data processing
- Grid computing as a solution
- Components of a Grid
- Introduction to Hadoop
- Hadoop ecosystem

Hadoop Software Ecosystem

- Pig Yahoo!
 - Parallel Programming Language and Runtime
- Zookeeper Yahoo!
 - High-Availability Directory and Configuration Service
- HBase Powerset.com
 - TableStore layered on HDFS
- JACL IBM
 - JSON / SQL inspired programming Hadoop language
- Mahout Individual apache members
 - Machine learning libraries for Hadoop
- Tashi Intel, CMU
 - Virtual machine provisioning service (soon)
- Hive Facebook.com
 - Data warehousing framework on Hadoop (soon)

Yahoo! Grid Services

- We operate multiple grid clusters within Yahoo!
- 10,000s nodes, 100,000s cores, TBs RAM, PBs disk
- Support large internal user community
- Manage data needs (Ingest TBs per day)
- Deploy and manage software (Hadoop, Pig, etc)

Example: Yahoo! WebMap

- Process which builds a database of all known Web pages and sites on the internet and a vast array of data about every page and site
- Includes a directed graph of the web
- The WebMap data feeds the Machine Learned Ranking algorithms at the heart of Yahoo! Search
- Build process consists of ~100 applications

- Ported to Hadoop MapReduce, entered production Q1 2008
- 33% time savings over previous version (non-MapReduce) on the same hardware
- Dramatically more maintainable and extensible
- Over 10,000 processors used in build
- Over 5PB of raw disk in cluster
- Output size >300TB (compressed)
- Largest job runs for ~70 hours

The largest production Hadoop job we know of!

Search & Advertising Sciences An example application: Search Assist™

- Database for Search Assist™ is built using Hadoop.
- 3 years of log-data
- 20-steps of map-reduce

	Before Hadoop	After Hadoop
Time	26 days	20 minutes
Language	C++	Python
Development Time	2-3 weeks	2-3 days

Hadoop usage outside Yahoo

Amazon

- Build product search index, process millions of sessions daily
- Clusters vary from 1-100 nodes

Facebook

- log file processing for analytics/reporting, machine learning
- 320 machine cluster, 2560 cores, 1.3PB of raw storage
- Lots of users of Nutch
- Intel/CMU
 - Building Ground Models of Southern California
- The New York Times uses it to process their archives

M45: Open Academic Clusters

- Collaboration with Major Research Universities
 - Foster open research
 - Focus on large-scale, highly parallel computing
- Seed Facility: Datacenter in a Box (DiB)
 - 500 nodes, 4000 cores, 3TB RAM, 1.5PB disk
 - High bandwidth connection to Internet
 - Located on Yahoo! corporate campus
- Runs Yahoo! / Apache Grid Stack
- Carnegie Mellon University is Initial Partner
- Public Announcement 11/12/07

What's ahead

- Improved scalability
 - E.g. 10s K nodes
 - Federated applications across clusters and data centers
- Improved performance
- Enhanced features
- Further extensions
 - on-line service grid?
- More applications, from many fields!

The Hadoop eco-system is growing and has the potential to have a lot of impact across the internet industry, and many others!

Reference links

- http://hadoop.apache.org/ The main Apache site
 - Mailing lists, the code, documentation and more
- http://developer.yahoo.com/blogs/hadoop Our blog
 - Reports, videos,... More on the way
- http://wiki.apache.org/hadoop/PoweredBy
 - A list of users, please add yourself!
- http://wiki.apache.org/hadoop/ProjectSuggestions
 - Ideas for folks who want to get started
- http://developer.yahoo.net/blog/archives/2007/07/yahoo-h

Our first timeline post...