YAaHOO!
HowTo Hadoop

Devaraj Das

Hadoop

http://hadoop.apache.org/core/

YaHoO!

Hadoop Distributed File System

« Fault tolerant, scalable, distributed storage system

« Designed to reliably store very large files across
machines in a large cluster

 Data Model

Data is organized into files and directories

Files are divided into uniform sized blocks and distributed
across cluster nodes

Blocks are replicated to handle hardware failure

Filesystem keeps checksums of data for corruption detection
and recovery

HDFS exposes block placement so that computes can be
migrated to data

YaHoO!

HDFS Architecture

 Master-Worker architecture
« HDFS Master “Namenode”

— Manages the filesystem namespace
— Controls read/write access to files
— Manages block replication
— Checkpoints namespace and journals hamespace changes
for reliability
« HDFS Workers “Datanodes”
— Serve read/write requests from clients
— Perform replication tasks upon instruction by Namenode

YaHoO!

HDFS Terminology

« Namenode

« Datanode
 DFS Client

» Files/Directories
Replication
Blocks
Rack-awareness

YaHoO!

Metadata ops M

Re!d Datanodes

HDFS Architecture

Metadata (Name, replicas, ...):
/home/foo/data, 3, ...
Block ops
Datanodes

DDE
=

%D

Replication

Is
\ N
Viite Rack 2

m m O

Blocks

Block Placement

« Default is 3 replicas, but settable

* Blocks are placed (writes are pipelined):
— On same node
— On different rack
— On the other rack

Clients read from closest replica

If the replication for a block drops below target,
it is automatically re-replicated.

YAaHOO! 9_’

Data Correctness

 Data is checked with CRC32

* File Creation
— Client computes checksum per 512 byte
— DataNode stores the checksum

 File access

— Client retrieves the data and checksum from
DataNode

— If Validation falils, Client tries other replicas

YaHoO! g!

Interacting with HDFS

hadoop fs [-fs <local | file system URI>] [-conf <configuration file>]

YaHoO!

[-D <property=value>] [-1s <path>] [-1lsr <path>] [-du <path>]
[-dus <path>] [-mv <src> <dst>] [-cp <src> <dst>] [-rm <src>]
[-rmr <src>] [-put <localsrc> <dst>] [-copyFromLocal <localsrc> <dst>]
[-moveFromLocal <localsrc> <dst>] [-get <src> <localdst>]
[-getmerge <src> <localdst> [addnl]] [-cat <src>]

[-copyTolLocal <src><localdst>] [-moveToLocal <src> <localdst>]
[-mkdir <path>] [-report] [-setrep [-R] [-w] <rep> <path/file>]
[-touchz <path>] [-test -[ezd] <path>] [-stat [format] <path>]
[-tail [-f] <path>] [-text <path>]

[-chmod [-R] <MODE[,MODE]... | OCTALMODE> PATH...]

[-chown [-R] [OWNER][:[GROUP]] PATH...]

[-chgrp [-R] GROUP PATH...]

[-help [cmd]]

Interacting with the HDFS

« Uploading files
— hadoop fs -put foo mydata/foo
— cat ReallyBigFile | hadoop fs -put - mydata/ReallyBigFile

* Downloading files
— hadoop fs -get mydata/foo foo
— hadoop fs -get - mydata/ReallyBigFile | grep “the answer is”
— hadoop fs -cat mydata/foo
* File Types
— Text files

— SequencekFiles
+ Key/Value pairs formatted for the framework to consume
» Per-file type information (key class, value class)

YaHoO!

HDFS API

* Most common file and directory operations

supported:
— create, open, close, read, write, seek, tell, list,
delete etc.
* Files are write once and have exclusively one
writer

— Append/truncate coming soon

« Some operations peculiar to HDFS:
— set replication, get block locations

* Owners, permissions supported now !

YaHoO!

Hadoop Map/Reduce

Simple: Transform & Aggregate
— But, Sort/merge before aggregate is (almost) always needed
— Operates at transfer rate
« Simple programming metaphor:
— input | map | shuffle | reduce > output
— cat * | grep | sort | uniq -c > file
« Pluggable user code runs in generic reusable framework
— A natural for log processing, great for most web search processing
— Aot of SQL maps trivially to this construct (see PIG)
» Distribution & reliability
— Handled by framework
« Several interfaces:
— Java, C++, text filter (a.k.a. Streaming)

YaHoO!

Hadoop MR Dataflow

[| } [Oo..m }

\ /
InputSplit Reduce
/
[IO..m-1 } [RO..M }
\ 7
Map Copy/Sort/Merge
N /

[MO..m-1} T —)NO..m-1RO..r-}

YAaHOO! 6_’

Hadoop MR - Terminology

« Job

« Task

* JobTracker

 TaskTracker

» JobClient

« Splits

* InputFormat/RecordReader

YaHoO!

Hadoop HDFS + MR cluster

Submit Job

CEO

Get Block
Locations

N
{JobTracker}

-/

D@

D@

O ®

> HTTP Monitoring Ul

YaHoO!

Machines with Datanodes and Tasktrackers

O@

D@

Hadoop: Two Services in One

Cluster Nodes run both DFS and M-R

M-R X o Y
DFS X Y|X X O Y Y

Input File
(128MB blocks)

O X

<

YaHoO!

WordCount: Hello World of
Hadoop

 Input: A bunch of large text files
* Desired Output: Frequencies of Words

YaHoO!

Word Count Example

* Mapper
— Input: value: lines of text of input
— QOutput: key: word, value: 1
* Reducer
— Input: key: word, value: set of counts
— Qutput: key: word, value: sum

* Launching program
— Defines the job

— Submits job to cluster

Map Output -> Reduce Input

« Map output is stored across local disks of task
tracker

« SO0 is reduce input

« Each task tracker machine also runs a
Datanode

 |n our config, datanode uses “upto” 85% of
ocal disks

» Large intermediate outputs can fill up local
disks and cause failures

— Non-even partitions too

YaHoO!

Word Count Dataflow

Input Map Shuffle & Sort Reduce Output
the quick
brown fox
brown, 2
fox, 2
how, 1
now, 1
- the, 3
the fox
ate the :
mouse how, 1 L
now, 1 :
brown, 1:
ate, 1
how now Com
brown cow eltiazh 1

Configuring a Job

« Jobs are controlled by configuring JobConfs

« JobConfs are maps from attribute names to string
value

« The framework defines attributes to control how the job
IS executed.

conf.set(“mapred.job.name”, “MyApp”);

* Applications can add arbitrary values to the JobConf
conf.set(“my.string”, “foo”);
conf.setInteger(“my.integer”, 12);

JobConf is available to all of the tasks

YAaHOO! g_’

Putting it all together

* Create a launching program for your
application
* The launching program configures:

— The Mapper and Reducer to use

— The output key and value types (input types are
iInferred from the InputFormat)

— The locations for your input and output

* The launching program then submits the job
and typically waits for it to complete

YaHoO!

Putting it all together

public class WordCount f{

public static void main (String[] args) throws IOException {
JobConf conf = new JobConf (WordCount.class);
// the keys are words (strings)
conf.setOutputKeyClass (Text.class) ,
// the values are counts (ints)
conf.setOutputValueClass (IntWritable.class);,

conf.setMapperClass (MapClass.class),
conf.setReducerClass (Reduce.class)
conf.setInputPath (new Path (args[0]);
conf.setOutputPath (new Path (args[1]);
JobClient. runJob (conf) ,;

YaHoO!

Some handy tools

* |Input/Output Formats
« Partitioners
 Combiners

« Compression

* Counters

« Speculation

« Zero reduces
 Distributed File Cache
* Tool

YaHoO!

Input and Output Formats

A Map/Reduce may specify how it's input is to be
read by specifying an InputFormat to be used

* A Map/Reduce may specify how it's output is to be
written by specitying an OutputFormat to be used

* These default to TextinputFormat and
TextOutputFormat, which process line-based text
data

* Another common choice is
SequenceFilelnputFormat and
SequenceFileOutputFormat for binary data

* These are file-based, but they are not required to be

YaHOO! !

Input -> InputSplits

* Input specified as collection of paths (typically on
HDFS)

« JobClient asks the specified InputFormat to provide
description of splits

» Default: FileSplit
— Each split is approximately DFS’s block
« mapred.min.split.size overrides this
— Gzipped files are not split
— A “split” does not cross file boundary
 Number of Splits = Number of Map tasks

YaHoO!

InputSplit -> RecordReader

Byte 0

* Record = (Key,
Value)

* |InputFormat

— TextlnputFormat

— Unless 1st, ignore all
before 1st separator

— Read-ahead to next
block to complete last
record

YaHoO!

EOF

How many Maps and Reduces

% Maps
Usually as many as the number of HDFS blocks
being processed, this is the default

Else the number of maps can be specified as a hint
The number of maps can also be controlled by
specifying the minimum split size
The actual sizes of the map inputs are computed by:
X% max(min(block _size, data/#tmaps), min_split_size)
* Reduces

Unless the amount of data being processed is small
% 0.95"num_nodes*mapred.tasktracker.tasks.maximum

YAaHOO! g_’

Example: Parameter Sweeps

« Usually an external program processes a
file based on command-line parameters

* E.g. ./prog in.txt —-params="0.1,0.3,0.7"
— Produces out.txt

* Objective: Run several instances of
“prog” for varying parameters over
parameter space

 Number of Mappers =Number of different

combinations of these parameters
YaHoO!

Partitioners

« Partitioners are application code that define how keys are
assigned to reduces

« Default partitioning spreads keys evenly, but randomly
— Uses key.hashCode() % num_reduces

« Custom partitioning is often required, for example, to
produce a total order in the output

— Should implement Partitioner interface

— Set by calling
conf.setPartitionerClass(MyPart.class)

— To get a total order, sample the map output keys and
pick values to divide the keys into roughly equal
buckets and use that in your partitioner

YAaHoO! 6.’

Partitioner

« Default partitioner evenly distributes records
— hashcode(key) mod NR
« Partitioner could be overridden
— When Value should also be considered
* a single key, but values distributed
— When a partition needs to obey other semantics
* Al URLs from a domain should be in the same
file
 Interface Partitioner
— int getPartition(K, V, nPartitions)

YaHoO!

Producing Fully Sorted Output

» By default each reducer gets input sorted
on key

* Typically reducer output order is the
same as input

« Each part file is sorted

 How to make sure that Keys in part i are
all less than keys in part i+1 ?

* Fully sorted output

YaHOO! !

Fully sorted output (contd.)

« Simple solution: Use single reducer
* But, not feasible for large data
* Insight: Reducer input also must be fully sorted

« Key to reducer mapping is determined by
partitioner

* Design a partitioner that implements fully
sorted reduce input

— sample the map output keys and pick values to divide
the keys into roughly equal buckets and use that in
your partitioner

YAaHoO! 6_’

Performance Analysis of Map-Reduce

MR performance requires
— Maximizing Map input transfer rate
— Pipelined writes from Reduce
— Small intermediate output
— Opportunity to Load Balance

YaHoO! 9_’

Map Input Transfer Rate

* Input locality
— HDFS exposes block locations
— Each map operates on one block

» Efficient decompression
— More efficient in Hadoop 0.18

* Minimal deserialization overhead

— Java serialization is very verbose
— Use Writable/Text

YaHoO!

A Counter Example

« Bob wanted to count lines in text files totaling several
terabytes

 He used
— ldentity Mapper (input copied directly to output)

— A single Reducer that counts the lines and outputs
the total

 What is he doing wrong ?
* This really happened!

« Take home message is that Hadoop is powerful and
can be dangerous in the wrong hands...

YaHoO!

Intermediate Output

* Almost always the most expensive
component

— M * R Transfers over the network
— Merging and Sorting
* How to improve performance:

— Avoid shuffling/sorting if possible
— Minimize redundant transfers
— Compress

YaHoO!

Avoid shuffling/sorting

« Set number of reducers to zero
— Known as map-only computations
— Filters, Projections, Transformations

« Beware of number of files generated
— Each map task produces a part file

— Make map produce equal number of output
files as input files
 How?

YaHoO!

Combiners

 When maps produce many repeated keys

— It is often useful to do a local aggregation following
the map

— Done by specifying a Combiner
— Goal is to decrease size of the transient data

— Combiners have the same interface as Reduces,
and often are the same class.

— Combiners must not have side effects, because
they run an indeterminate number of times.

— In WordCount,
conf.setCombinerClass(Reduce.class);

YaHoO!

Compression

« Compressing the outputs and intermediate data will often yield
huge performance gains

— Can be specified via a configuration file or set programatically
— Set mapred.output.compress to true to compress job output
— Set mapred.compress.map.output to true to compress map outputs
« Compression Types (mapred.output.compression.type)
— “block” - Group of keys and values are compressed together
— “record” - Each value is compressed individually
— Block compression is almost always best
« Compression Codecs (mapred(.map)?.output.compression.codec)
— Default (zlib) - slower, but more compression
— LZO - faster, but less compression

YaHoO! g _

Opportunity to Load Balance

* Load imbalance inherent in the application
— Imbalance in input splits
— Imbalance in computations
— Imbalance in partition sizes

* Load imbalance due to heterogeneous
hardware

— Over time performance degradation

« Give Hadoop an opportunity to do load-
balancing

YaHoO!

Configuring Task Slots

« mapred.tasktracker.map.tasks.maximum
* mapred.tasktracker.reduce.tasks.maximum
« Tradeoffs:
— Number of cores
— Amount of memory
— Number of local disks
— Amount of local scratch space
— Number of processes
« Also consider resources consumed by Tasktracker & Datanode

YaHoO!

Speculative execution

* The framework can run multiple
iInstances of slow tasks

— Output from instance that finishes first is
used

— Controlled by the configuration variable
mapred.speculative.execution

— Can dramatically bring in long tails on jobs

YaHoO!

Performance Summary

X Is your input splittable?
Gzipped files are NOT splittable

X Are partitioners uniform?
% Buffering sizes (especially io.sort.mb)
*Do you need to Reduce?

% Only use singleton reduces for very small
data

Use Partitioners and cat to get a total order

X% Memory usage

Please do not load all of your inputs into
memory!

YaHoO!

Counters

« Often Map/Reduce applications have countable events

* For example, framework counts records in to and out of
Mapper and Reducer

* To define user counters:
static enum Counter {EVENTI1, EVENTR2};
reporter.incrCounter(Counter. EVENTI1, 1);

.]E)Iefine nice names in a MyClass_Counter.properties
e
CounterGroupName=My Counters
EVENTI1.name=Event 1
EVENTRZ.name=Event 2

YAHOO! 6 _’

Deploying Auxiliary Files

 -file auxFile.dat

» Job submitter adds file to job.jar
* Unjarred on the task tracker
 Available as $cwd/auxFile.dat

* Not suitable for more / larger / frequently
used files

YaHoO!

Using Distributed Cache

« Sometimes, you need to access “side” files
(such as “in.txt")

« Read-only Dictionaries (such as for porn
filtering)

 Libraries dynamically linked to streaming
mapper/reducer

« Tasks themselves can fetch files from HDFS
— Not Always ! (Hint: Unresolved symbols)
 Performance bottleneck

YAaHOO! g_’

Distributed File Cache

« Define list of files you need to download in JobConf

* Add to launching program:
DistributedCache.addCacheFile(new URI(“hdfs://nn:8020/fo0™),
conf);
* Add to task:

Path[] files =
DistributedCache.getLocalCacheFiles(conf);

YaHoO!

Caching Files Across Tasks

% Specify “side” files via —cachekFile

X If lot of such files needed

Jar them up (.tgz coming soon)
Upload to HDFS
Specify via —cacheArchive

X% TaskTracker downloads these files “once”
% Unjars archives

X Accessible in task’s cwd before task even
starts

X Automtic cleanup upon exit

YaHoO!

Tool

» Handle “standard” Hadoop command line options:
- -conf file - load a configuration file named file
- -D prop=value - define a single configuration property prop
» Class looks like:
public class MyApp extends Configured implements Tool {
public static void main(String[] args) throws Exception {
System.exit(ToolRunner.run(new Configuration(),

new MyApp(), args));
}

public int run(String[] args) throws Exception {
.... 8etConf() ...

}
}

YaHoO!

Non-Java Interfaces

» Streaming
* Pipes (C++)
* Pig

YaHoO!

Streaming

What about non-programmers?

— Can define Mapper and Reducer using Unix text filters

— Typically use grep, sed, python, or perl scripts
* Format for input and output is: key \t value \n
* Allows for easy debugging and experimentation
« Slower than Java programs

bin/hadoop jar hadoop-streaming.jar -input in-dir -output out-dir
-mapper streamingMapper.sh -reducer streamingReducer.sh

« Wordcount Mapper: sed -e 's| |\n|g' | grep .
« Wordcount Reducer: uniq -¢ | awk '{print $2 "\t" $1}'

YaHoO!

Pipes (C++)

« C++ APl and library to link application with
« C++ application is launched as a sub-process of the Java task
« Keys and values are std::string with binary data
 Word count map looks like:
class WordCountMap: public HadoopPipes::Mapper {
public:
WordCountMap(HadoopPipes::TaskContextée context){ }
void map(HadoopPipes::MapContext& context) {
std::vector<std::string> words =
HadoopUtils::splitString(context.getInputValue(), " ");
for(unsigned int i=0; i < words.size(); ++i) {
context.emit(words[i], "1");

M

YaHoO!

Pig

« Scripting language that generates Map/Reduce jobs
» User uses higher level operations

— Group by

— Foreach
« Word Count:

input = LOAD ’in-dir' USING TextLoader();

words = FOREACH input GENERATE
FLATTEN(TOKENIZE(*));

grouped = GROUP words BY $0;

counts = FOREACH grouped GENERATE group,
COUNT(words);

STORE counts INTO ‘out-dir’;

YaHoO!

Hadoop Streaming

* Not everyone is a Java programmer
* Python, Perl, Shell scripts

* Most languages support
— Reading from <stdin>
— Writing to <stdout>
 Mapper & Reducer: External Programs

* Framework serializes/deserializes /0O to/
from Strings

YaHOO! !

