
HowTo Hadoop

Devaraj Das

Hadoop

http://hadoop.apache.org/core/

Hadoop Distributed File System

•  Fault tolerant, scalable, distributed storage system
•  Designed to reliably store very large files across

machines in a large cluster
•  Data Model

–  Data is organized into files and directories
–  Files are divided into uniform sized blocks and distributed

across cluster nodes
–  Blocks are replicated to handle hardware failure
–  Filesystem keeps checksums of data for corruption detection

and recovery
–  HDFS exposes block placement so that computes can be

migrated to data

HDFS Architecture

•  Master-Worker architecture
•  HDFS Master “Namenode”

–  Manages the filesystem namespace
–  Controls read/write access to files
–  Manages block replication
–  Checkpoints namespace and journals namespace changes

for reliability

•  HDFS Workers “Datanodes”
–  Serve read/write requests from clients
–  Perform replication tasks upon instruction by Namenode

HDFS Terminology

•  Namenode
•  Datanode
•  DFS Client
•  Files/Directories
•  Replication
•  Blocks
•  Rack-awareness

Block Placement

•  Default is 3 replicas, but settable
•  Blocks are placed (writes are pipelined):

–  On same node
–  On different rack
–  On the other rack

•  Clients read from closest replica
•  If the replication for a block drops below target,

it is automatically re-replicated.

Data Correctness

•  Data is checked with CRC32
•  File Creation

– Client computes checksum per 512 byte
– DataNode stores the checksum

•  File access
– Client retrieves the data and checksum from

DataNode
–  If Validation fails, Client tries other replicas

Interacting with HDFS

Interacting with the HDFS

•  Uploading files
–  hadoop fs -put foo mydata/foo
–  cat ReallyBigFile | hadoop fs -put - mydata/ReallyBigFile

•  Downloading files
–  hadoop fs -get mydata/foo foo
–  hadoop fs -get - mydata/ReallyBigFile | grep “the answer is”
–  hadoop fs -cat mydata/foo

•  File Types
–  Text files
–  SequenceFiles

•  Key/Value pairs formatted for the framework to consume
•  Per-file type information (key class, value class)

HDFS API

•  Most common file and directory operations
supported:
–  create, open, close, read, write, seek, tell, list,

delete etc.
•  Files are write once and have exclusively one

writer
–  Append/truncate coming soon

•  Some operations peculiar to HDFS:
–  set replication, get block locations

•  Owners, permissions supported now !

Hadoop Map/Reduce

•  Simple: Transform & Aggregate
–  But, Sort/merge before aggregate is (almost) always needed
–  Operates at transfer rate

•  Simple programming metaphor:
–  input | map | shuffle | reduce > output
–  cat * | grep | sort | uniq -c > file

•  Pluggable user code runs in generic reusable framework
–  A natural for log processing, great for most web search processing
–  A lot of SQL maps trivially to this construct (see PIG)

•  Distribution & reliability
–  Handled by framework

•  Several interfaces:
–  Java, C++, text filter (a.k.a. Streaming)

Hadoop MR Dataflow

I

I0..m-1

M0..m-1 M0..m-1R0..r-1

O0..r-1

R0..r-1

InputSplit

Partition

Copy/Sort/Merge
Map

Reduce

Hadoop MR - Terminology

•  Job
•  Task
•  JobTracker
•  TaskTracker
•  JobClient
•  Splits
•  InputFormat/RecordReader

Hadoop HDFS + MR cluster

D D D D T T

JobTracker

Namenode

Machines with Datanodes and Tasktrackers

T T T D

Client

Submit Job

HTTP Monitoring UI
Get Block
 Locations

Hadoop: Two Services in One

X
O
Y

X X X O O O Y Y Y
X Y O

Input File
(128MB blocks)

M-R

DFS

Cluster Nodes run both DFS and M-R

WordCount: Hello World of
Hadoop

•  Input: A bunch of large text files
•  Desired Output: Frequencies of Words

Word Count Example

•  Mapper
–  Input: value: lines of text of input
– Output: key: word, value: 1

•  Reducer
–  Input: key: word, value: set of counts
– Output: key: word, value: sum

•  Launching program
– Defines the job
– Submits job to cluster

Map Output -> Reduce Input

•  Map output is stored across local disks of task
tracker

•  So is reduce input
•  Each task tracker machine also runs a

Datanode
•  In our config, datanode uses “upto” 85% of

local disks
•  Large intermediate outputs can fill up local

disks and cause failures
– Non-even partitions too

Word Count Dataflow

Configuring a Job

•  Jobs are controlled by configuring JobConfs
•  JobConfs are maps from attribute names to string

value
•  The framework defines attributes to control how the job

is executed.
conf.set(“mapred.job.name”, “MyApp”);

•  Applications can add arbitrary values to the JobConf
conf.set(“my.string”, “foo”);

conf.setInteger(“my.integer”, 12);

•  JobConf is available to all of the tasks

Putting it all together

•  Create a launching program for your
application

•  The launching program configures:
–  The Mapper and Reducer to use
–  The output key and value types (input types are

inferred from the InputFormat)
–  The locations for your input and output

•  The launching program then submits the job
and typically waits for it to complete

Putting it all together

public class WordCount {
……
public static void main(String[] args) throws IOException {
 JobConf conf = new JobConf(WordCount.class);
 // the keys are words (strings)
 conf.setOutputKeyClass(Text.class);
 // the values are counts (ints)
 conf.setOutputValueClass(IntWritable.class);

 conf.setMapperClass(MapClass.class);
 conf.setReducerClass(Reduce.class);
 conf.setInputPath(new Path(args[0]);
 conf.setOutputPath(new Path(args[1]);
 JobClient.runJob(conf);
…..

Some handy tools

•  Input/Output Formats
•  Partitioners
•  Combiners
•  Compression
•  Counters
•  Speculation
•  Zero reduces
•  Distributed File Cache
•  Tool

Input and Output Formats

•  A Map/Reduce may specify how it’s input is to be
read by specifying an InputFormat to be used

•  A Map/Reduce may specify how it’s output is to be
written by specifying an OutputFormat to be used

•  These default to TextInputFormat and
TextOutputFormat, which process line-based text
data

•  Another common choice is
SequenceFileInputFormat and
SequenceFileOutputFormat for binary data

•  These are file-based, but they are not required to be

Input -> InputSplits

•  Input specified as collection of paths (typically on
HDFS)

•  JobClient asks the specified InputFormat to provide
description of splits

•  Default: FileSplit
–  Each split is approximately DFS’s block

•  mapred.min.split.size overrides this
–  Gzipped files are not split
–  A “split” does not cross file boundary

•  Number of Splits = Number of Map tasks

InputSplit -> RecordReader

•  Record = (Key,
Value)

•  InputFormat
–  TextInputFormat
–  Unless 1st, ignore all

before 1st separator
–  Read-ahead to next

block to complete last
record

Byte 0

EOF

How many Maps and Reduces

 Maps
 Usually as many as the number of HDFS blocks

being processed, this is the default
 Else the number of maps can be specified as a hint
 The number of maps can also be controlled by

specifying the minimum split size
 The actual sizes of the map inputs are computed by:

 max(min(block_size, data/#maps), min_split_size)

 Reduces
 Unless the amount of data being processed is small

 0.95*num_nodes*mapred.tasktracker.tasks.maximum

Example: Parameter Sweeps

•  Usually an external program processes a
file based on command-line parameters

•  E.g. ./prog in.txt –params=“0.1,0.3,0.7”
– Produces out.txt

•  Objective: Run several instances of
“prog” for varying parameters over
parameter space

•  Number of Mappers =Number of different
combinations of these parameters

Partitioners

•  Partitioners are application code that define how keys are
assigned to reduces

•  Default partitioning spreads keys evenly, but randomly
–  Uses key.hashCode() % num_reduces

•  Custom partitioning is often required, for example, to
produce a total order in the output
–  Should implement Partitioner interface
–  Set by calling

conf.setPartitionerClass(MyPart.class)
–  To get a total order, sample the map output keys and

pick values to divide the keys into roughly equal
buckets and use that in your partitioner

Partitioner

•  Default partitioner evenly distributes records
–  hashcode(key) mod NR

•  Partitioner could be overridden
–  When Value should also be considered

•  a single key, but values distributed
–  When a partition needs to obey other semantics

•  Al URLs from a domain should be in the same
file

•  Interface Partitioner
–  int getPartition(K, V, nPartitions)

Producing Fully Sorted Output

•  By default each reducer gets input sorted
on key

•  Typically reducer output order is the
same as input

•  Each part file is sorted
•  How to make sure that Keys in part i are

all less than keys in part i+1 ?
•  Fully sorted output

Fully sorted output (contd.)

•  Simple solution: Use single reducer
•  But, not feasible for large data
•  Insight: Reducer input also must be fully sorted
•  Key to reducer mapping is determined by

partitioner
•  Design a partitioner that implements fully

sorted reduce input
–  sample the map output keys and pick values to divide

the keys into roughly equal buckets and use that in
your partitioner

Performance Analysis of Map-Reduce

•  MR performance requires
– Maximizing Map input transfer rate
– Pipelined writes from Reduce
– Small intermediate output
– Opportunity to Load Balance

Map Input Transfer Rate

•  Input locality
– HDFS exposes block locations
– Each map operates on one block

•  Efficient decompression
– More efficient in Hadoop 0.18

•  Minimal deserialization overhead
– Java serialization is very verbose
– Use Writable/Text

A Counter Example

•  Bob wanted to count lines in text files totaling several
terabytes

•  He used
–  Identity Mapper (input copied directly to output)
–  A single Reducer that counts the lines and outputs

the total
•  What is he doing wrong ?
•  This really happened!
•  Take home message is that Hadoop is powerful and

can be dangerous in the wrong hands…

Intermediate Output

•  Almost always the most expensive
component
– M * R Transfers over the network
– Merging and Sorting

•  How to improve performance:
– Avoid shuffling/sorting if possible
– Minimize redundant transfers
– Compress

Avoid shuffling/sorting

•  Set number of reducers to zero
– Known as map-only computations
– Filters, Projections, Transformations

•  Beware of number of files generated
– Each map task produces a part file
– Make map produce equal number of output

files as input files
•  How?

Combiners

•  When maps produce many repeated keys
–  It is often useful to do a local aggregation following

the map
–  Done by specifying a Combiner
–  Goal is to decrease size of the transient data
–  Combiners have the same interface as Reduces,

and often are the same class.
–  Combiners must not have side effects, because

they run an indeterminate number of times.
–  In WordCount,

conf.setCombinerClass(Reduce.class);

Compression

•  Compressing the outputs and intermediate data will often yield
huge performance gains
–  Can be specified via a configuration file or set programatically
–  Set mapred.output.compress to true to compress job output
–  Set mapred.compress.map.output to true to compress map outputs

•  Compression Types (mapred.output.compression.type)
–  “block” - Group of keys and values are compressed together
–  “record” - Each value is compressed individually
–  Block compression is almost always best

•  Compression Codecs (mapred(.map)?.output.compression.codec)
–  Default (zlib) - slower, but more compression
–  LZO - faster, but less compression

Opportunity to Load Balance

•  Load imbalance inherent in the application
–  Imbalance in input splits
–  Imbalance in computations
–  Imbalance in partition sizes

•  Load imbalance due to heterogeneous
hardware
– Over time performance degradation

•  Give Hadoop an opportunity to do load-
balancing

Configuring Task Slots

•  mapred.tasktracker.map.tasks.maximum
•  mapred.tasktracker.reduce.tasks.maximum
•  Tradeoffs:

–  Number of cores
–  Amount of memory
–  Number of local disks
–  Amount of local scratch space
–  Number of processes

•  Also consider resources consumed by Tasktracker & Datanode

Speculative execution

•  The framework can run multiple
instances of slow tasks
– Output from instance that finishes first is

used
– Controlled by the configuration variable

mapred.speculative.execution
– Can dramatically bring in long tails on jobs

Performance Summary

 Is your input splittable?
 Gzipped files are NOT splittable

 Are partitioners uniform?
 Buffering sizes (especially io.sort.mb)
 Do you need to Reduce?
 Only use singleton reduces for very small

data
 Use Partitioners and cat to get a total order

 Memory usage
 Please do not load all of your inputs into

memory!

Counters

•  Often Map/Reduce applications have countable events
•  For example, framework counts records in to and out of

Mapper and Reducer
•  To define user counters:

static enum Counter {EVENT1, EVENT2};

reporter.incrCounter(Counter.EVENT1, 1);

•  Define nice names in a MyClass_Counter.properties
file
CounterGroupName=My Counters

EVENT1.name=Event 1

EVENT2.name=Event 2

Deploying Auxiliary Files

•  -file auxFile.dat
•  Job submitter adds file to job.jar
•  Unjarred on the task tracker
•  Available as $cwd/auxFile.dat
•  Not suitable for more / larger / frequently

used files

Using Distributed Cache

•  Sometimes, you need to access “side” files
(such as “in.txt”)

•  Read-only Dictionaries (such as for porn
filtering)

•  Libraries dynamically linked to streaming
mapper/reducer

•  Tasks themselves can fetch files from HDFS
– Not Always ! (Hint: Unresolved symbols)

•  Performance bottleneck

Distributed File Cache

•  Define list of files you need to download in JobConf
•  Add to launching program:

DistributedCache.addCacheFile(new URI(“hdfs://nn:8020/foo”),
conf);

•  Add to task:
Path[] files =

DistributedCache.getLocalCacheFiles(conf);

Caching Files Across Tasks

 Specify “side” files via –cacheFile
 If lot of such files needed

 Jar them up (.tgz coming soon)
 Upload to HDFS
 Specify via –cacheArchive

 TaskTracker downloads these files “once”
 Unjars archives
 Accessible in task’s cwd before task even

starts
 Automtic cleanup upon exit

Tool

•  Handle “standard” Hadoop command line options:
–  -conf file - load a configuration file named file
–  -D prop=value - define a single configuration property prop

•  Class looks like:
public class MyApp extends Configured implements Tool {

 public static void main(String[] args) throws Exception {

 System.exit(ToolRunner.run(new Configuration(),

 new MyApp(), args));

 }

 public int run(String[] args) throws Exception {

 …. getConf() …

 }

}

Non-Java Interfaces

•  Streaming
•  Pipes (C++)
•  Pig

Streaming

•  What about non-programmers?
–  Can define Mapper and Reducer using Unix text filters
–  Typically use grep, sed, python, or perl scripts

•  Format for input and output is: key \t value \n
•  Allows for easy debugging and experimentation
•  Slower than Java programs

bin/hadoop jar hadoop-streaming.jar -input in-dir -output out-dir

 -mapper streamingMapper.sh -reducer streamingReducer.sh

•  Wordcount Mapper: sed -e 's| |\n|g' | grep .
•  Wordcount Reducer: uniq -c | awk '{print $2 "\t" $1}'

Pipes (C++)

•  C++ API and library to link application with
•  C++ application is launched as a sub-process of the Java task
•  Keys and values are std::string with binary data
•  Word count map looks like:

class WordCountMap: public HadoopPipes::Mapper {

public:

 WordCountMap(HadoopPipes::TaskContext& context){}

 void map(HadoopPipes::MapContext& context) {

 std::vector<std::string> words =

 HadoopUtils::splitString(context.getInputValue(), " ");

 for(unsigned int i=0; i < words.size(); ++i) {

 context.emit(words[i], "1");

 }}};

Pig

•  Scripting language that generates Map/Reduce jobs
•  User uses higher level operations

–  Group by
–  Foreach

•  Word Count:
input = LOAD ’in-dir' USING TextLoader();

words = FOREACH input GENERATE

FLATTEN(TOKENIZE(*));

grouped = GROUP words BY $0;

counts = FOREACH grouped GENERATE group,

COUNT(words);

STORE counts INTO ‘out-dir’;

Hadoop Streaming

•  Not everyone is a Java programmer
•  Python, Perl, Shell scripts
•  Most languages support

– Reading from <stdin>
– Writing to <stdout>

•  Mapper & Reducer: External Programs
•  Framework serializes/deserializes I/O to/

from Strings

