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Hadoop 

http://hadoop.apache.org/core/ 



Hadoop Distributed File System 

•  Fault tolerant, scalable, distributed storage system 
•  Designed to reliably store very large files across 

machines in a large cluster 
•  Data Model 

–  Data is organized into files and directories 
–  Files are divided into uniform sized blocks and distributed 

across cluster nodes 
–  Blocks are replicated to handle hardware failure 
–  Filesystem keeps checksums of data for corruption detection 

and recovery 
–  HDFS exposes block placement so that computes can be 

migrated to data 



HDFS Architecture 

•  Master-Worker architecture 
•  HDFS Master “Namenode” 

–   Manages the filesystem namespace 
–   Controls read/write access to files 
–   Manages block replication 
–   Checkpoints namespace and journals namespace changes 

for reliability 

•  HDFS Workers “Datanodes” 
–   Serve read/write requests from clients 
–   Perform replication tasks upon instruction by Namenode 



HDFS Terminology 

•  Namenode 
•  Datanode 
•  DFS Client 
•  Files/Directories 
•  Replication 
•  Blocks 
•  Rack-awareness 



Block Placement 

•  Default is 3 replicas, but settable 
•  Blocks are placed (writes are pipelined): 

–  On same node 
–  On different rack 
–  On the other rack 

•  Clients read from closest replica 
•  If the replication for a block drops below target, 

it is automatically re-replicated. 



Data Correctness 

•  Data is checked with CRC32 
•  File Creation 

– Client computes checksum per 512 byte 
– DataNode stores the checksum  

•  File access 
– Client retrieves the data and checksum from 

DataNode 
–  If Validation fails, Client tries other replicas 



Interacting with HDFS 



Interacting with the HDFS 

•  Uploading files 
–  hadoop fs -put foo mydata/foo 
–  cat ReallyBigFile | hadoop fs -put - mydata/ReallyBigFile 

•  Downloading files 
–  hadoop fs -get mydata/foo foo 
–  hadoop fs -get - mydata/ReallyBigFile | grep “the answer is” 
–  hadoop fs -cat mydata/foo 

•  File Types 
–  Text files 
–  SequenceFiles 

•  Key/Value pairs formatted for the framework to consume 
•  Per-file type information (key class, value class) 



HDFS API 

•  Most common file and directory operations 
supported: 
–   create, open, close, read, write, seek, tell, list, 

delete etc. 
•  Files are write once and have exclusively one 

writer 
–   Append/truncate coming soon 

•  Some operations peculiar to HDFS: 
–   set replication, get block locations 

•  Owners, permissions supported now ! 



Hadoop Map/Reduce 

•  Simple: Transform & Aggregate 
–  But, Sort/merge before aggregate is (almost) always needed 
–  Operates at transfer rate  

•  Simple programming metaphor: 
–  input | map  | shuffle | reduce  > output  
–  cat * | grep | sort | uniq -c > file 

•  Pluggable user code runs in generic reusable framework 
–  A natural for log processing, great for most web search processing 
–  A lot of SQL maps trivially to this construct (see PIG) 

•  Distribution & reliability 
–  Handled by framework 

•  Several interfaces: 
–  Java, C++, text filter (a.k.a. Streaming) 



Hadoop MR Dataflow 
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Hadoop MR - Terminology 

•  Job 
•  Task 
•  JobTracker 
•  TaskTracker 
•  JobClient 
•  Splits 
•  InputFormat/RecordReader 



Hadoop HDFS + MR cluster 
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Hadoop: Two Services in One 
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WordCount: Hello World of 
Hadoop 

•  Input: A bunch of large text files 
•  Desired Output: Frequencies of Words 



Word Count Example 

•  Mapper 
–  Input: value: lines of text of input 
– Output: key: word, value: 1 

•  Reducer 
–  Input: key: word, value: set of counts 
– Output: key: word, value: sum 

•  Launching program 
– Defines the job 
– Submits job to cluster 



Map Output -> Reduce Input 

•  Map output is stored across local disks of task 
tracker 

•  So is reduce input 
•  Each task tracker machine also runs a 

Datanode 
•  In our config, datanode uses “upto” 85% of 

local disks 
•  Large intermediate outputs can fill up local 

disks and cause failures 
– Non-even partitions too 



Word Count Dataflow 



Configuring a Job 

•  Jobs are controlled by configuring JobConfs 
•  JobConfs are maps from attribute names to string 

value 
•  The framework defines attributes to control how the job 

is executed. 
conf.set(“mapred.job.name”, “MyApp”); 

•  Applications can add arbitrary values to the JobConf 
conf.set(“my.string”, “foo”);

conf.setInteger(“my.integer”, 12);


•  JobConf is available to all of the tasks 



Putting it all together 

•  Create a launching program for your 
application 

•  The launching program configures:  
–  The Mapper and Reducer to use 
–  The output key and value types (input types are 

inferred from the InputFormat) 
–  The locations for your input and output 

•  The launching program then submits the job 
and typically waits for it to complete 



Putting it all together 

public class WordCount { 
……  
public static void main(String[] args) throws IOException { 
    JobConf conf = new JobConf(WordCount.class); 
    // the keys are words (strings) 
    conf.setOutputKeyClass(Text.class); 
    // the values are counts (ints) 
    conf.setOutputValueClass(IntWritable.class); 

    conf.setMapperClass(MapClass.class); 
    conf.setReducerClass(Reduce.class); 
    conf.setInputPath(new Path(args[0]); 
    conf.setOutputPath(new Path(args[1]); 
    JobClient.runJob(conf); 
….. 



Some handy tools 

•  Input/Output Formats 
•  Partitioners  
•  Combiners 
•  Compression 
•  Counters 
•  Speculation 
•  Zero reduces 
•  Distributed File Cache 
•  Tool 



Input and Output Formats 

•  A Map/Reduce may specify how it’s input is to be 
read by specifying an InputFormat to be used 

•  A Map/Reduce may specify how it’s output is to be 
written by specifying an OutputFormat to be used 

•  These default to TextInputFormat and 
TextOutputFormat, which process line-based text 
data 

•  Another common choice is 
SequenceFileInputFormat and 
SequenceFileOutputFormat for binary data 

•  These are file-based, but they are not required to be 



Input -> InputSplits 

•  Input specified as collection of paths (typically on 
HDFS) 

•  JobClient asks the specified InputFormat to provide 
description of splits 

•  Default: FileSplit 
–  Each split is approximately DFS’s block 

•  mapred.min.split.size overrides this 
–  Gzipped files are not split 
–  A “split” does not cross file boundary 

•  Number of Splits = Number of Map tasks 



InputSplit -> RecordReader 

•  Record = (Key, 
Value) 

•  InputFormat 
–  TextInputFormat 
–  Unless 1st, ignore all 

before 1st separator 
–  Read-ahead to next 

block to complete last 
record 

Byte 0 

EOF 



How many Maps and Reduces 

 Maps 
 Usually as many as the number of HDFS blocks 

being processed, this is the default 
 Else the number of maps can be specified as a hint 
 The number of maps can also be controlled by 

specifying the minimum split size 
 The actual sizes of the map inputs are computed by: 

 max(min(block_size, data/#maps), min_split_size) 

 Reduces 
 Unless the amount of data being processed is small 

 0.95*num_nodes*mapred.tasktracker.tasks.maximum 



Example: Parameter Sweeps 

•  Usually an external program processes a 
file based on command-line parameters 

•  E.g. ./prog in.txt –params=“0.1,0.3,0.7” 
– Produces out.txt 

•  Objective: Run several instances of 
“prog” for varying parameters over 
parameter space 

•  Number of Mappers =Number of different 
combinations of these parameters  



Partitioners 

•  Partitioners are application code that define how keys are 
assigned to reduces 

•  Default partitioning spreads keys evenly, but randomly 
–  Uses key.hashCode() % num_reduces 

•  Custom partitioning is often required, for example, to 
produce a total order in the output 
–  Should implement Partitioner interface 
–  Set by calling 

conf.setPartitionerClass(MyPart.class) 
–  To get a total order, sample the map output keys and 

pick values to divide the keys into roughly equal 
buckets and use that in your partitioner 



Partitioner 

•  Default partitioner evenly distributes records  
–  hashcode(key) mod NR 

•  Partitioner could be overridden 
–  When Value should also be considered 

•  a single key, but values distributed 
–  When a partition needs to obey other semantics 

•  Al URLs from a domain should be in the same 
file 

•  Interface Partitioner 
–  int getPartition(K, V, nPartitions) 



Producing Fully Sorted Output 

•  By default each reducer gets input sorted 
on key 

•  Typically reducer output order is the 
same as input 

•  Each part file is sorted 
•  How to make sure that Keys in part i are 

all less than keys in part i+1 ? 
•  Fully sorted output 



Fully sorted output (contd.) 

•  Simple solution: Use single reducer 
•  But, not feasible for large data 
•  Insight: Reducer input also must be fully sorted 
•  Key to reducer mapping is determined by 

partitioner 
•  Design a partitioner that implements fully 

sorted reduce input 
–  sample the map output keys and pick values to divide 

the keys into roughly equal buckets and use that in 
your partitioner 



Performance Analysis of Map-Reduce 

•  MR performance requires 
– Maximizing Map input transfer rate 
– Pipelined writes from Reduce 
– Small intermediate output 
– Opportunity to Load Balance 



Map Input Transfer Rate 

•  Input locality 
– HDFS exposes block locations 
– Each map operates on one block 

•  Efficient decompression 
– More efficient in Hadoop 0.18 

•  Minimal deserialization overhead 
– Java serialization is very verbose 
– Use Writable/Text 



A Counter Example 

•  Bob wanted to count lines in text files totaling several 
terabytes 

•  He used 
–  Identity Mapper (input copied directly to output) 
–  A single Reducer that counts the lines and outputs 

the total  
•  What is he doing wrong ? 
•  This really happened! 
•  Take home message is that Hadoop is powerful and 

can be dangerous in the wrong hands… 



Intermediate Output 

•  Almost always the most expensive 
component 
– M * R Transfers over the network 
– Merging and Sorting 

•  How to improve performance: 
– Avoid shuffling/sorting if possible 
– Minimize redundant transfers 
– Compress 



Avoid shuffling/sorting 

•  Set number of reducers to zero 
– Known as map-only computations 
– Filters, Projections, Transformations 

•  Beware of number of files generated 
– Each map task produces a part file 
– Make map produce equal number of output 

files as input files 
•  How? 



Combiners 

•  When maps produce many repeated keys 
–  It is often useful to do a local aggregation following 

the map 
–  Done by specifying a Combiner 
–  Goal is to decrease size of the transient data 
–  Combiners have the same interface as Reduces, 

and often are the same class. 
–  Combiners must not have side effects, because 

they run an indeterminate number of times. 
–  In WordCount, 

conf.setCombinerClass(Reduce.class); 



Compression 

•  Compressing the outputs and intermediate data will often yield 
huge performance gains 
–  Can be specified via a configuration file or set programatically 
–  Set mapred.output.compress to true to compress job output 
–  Set mapred.compress.map.output to true to compress map outputs 

•  Compression Types (mapred.output.compression.type) 
–  “block” - Group of keys and values are compressed together 
–  “record” - Each value is compressed individually 
–  Block compression is almost always best 

•  Compression Codecs (mapred(.map)?.output.compression.codec) 
–  Default (zlib) - slower, but more compression 
–  LZO - faster, but less compression 



Opportunity to Load Balance 

•  Load imbalance inherent in the application 
–  Imbalance in input splits 
–  Imbalance in computations 
–  Imbalance in partition sizes 

•  Load imbalance due to heterogeneous 
hardware 
– Over time performance degradation 

•  Give Hadoop an opportunity to do load-
balancing 



Configuring Task Slots 

•  mapred.tasktracker.map.tasks.maximum 
•  mapred.tasktracker.reduce.tasks.maximum 
•  Tradeoffs: 

–  Number of cores 
–  Amount of memory 
–  Number of local disks 
–  Amount of local scratch space 
–  Number of processes 

•  Also consider resources consumed by Tasktracker & Datanode  



Speculative execution 

•  The framework can run multiple 
instances of slow tasks 
– Output from instance that finishes first is 

used 
– Controlled by the configuration variable 

mapred.speculative.execution 
– Can dramatically bring in long tails on jobs 



Performance Summary 

 Is your input splittable? 
 Gzipped files are NOT splittable 

 Are partitioners uniform? 
 Buffering sizes (especially io.sort.mb) 
 Do you need to Reduce? 
 Only use singleton reduces for very small 

data 
 Use Partitioners and cat to get a total order 

 Memory usage 
 Please do not load all of your inputs into 

memory! 



Counters 

•  Often Map/Reduce applications have countable events 
•  For example, framework counts records in to and out of 

Mapper and Reducer 
•  To define user counters: 

static enum Counter {EVENT1, EVENT2};

reporter.incrCounter(Counter.EVENT1, 1); 

•  Define nice names in a MyClass_Counter.properties 
file 
CounterGroupName=My Counters

EVENT1.name=Event 1

EVENT2.name=Event 2




Deploying Auxiliary Files 

•  -file auxFile.dat 
•  Job submitter adds file to job.jar 
•  Unjarred on the task tracker 
•  Available as $cwd/auxFile.dat 
•  Not suitable for more / larger / frequently 

used files  



Using Distributed Cache 

•  Sometimes, you need to access “side” files 
(such as “in.txt”) 

•  Read-only Dictionaries (such as for porn 
filtering) 

•  Libraries dynamically linked to streaming 
mapper/reducer 

•  Tasks themselves can fetch files from HDFS 
– Not Always ! (Hint: Unresolved symbols) 

•  Performance bottleneck 



Distributed File Cache 

•  Define list of files you need to download in JobConf 
•  Add to launching program: 

DistributedCache.addCacheFile(new URI(“hdfs://nn:8020/foo”), 
conf); 

•  Add to task: 
Path[] files = 

DistributedCache.getLocalCacheFiles(conf); 



Caching Files Across Tasks 

 Specify “side” files via –cacheFile 
 If lot of such files needed 

 Jar them up (.tgz coming soon) 
 Upload to HDFS 
 Specify via –cacheArchive 

 TaskTracker downloads these files “once” 
 Unjars archives 
 Accessible in task’s cwd before task even 

starts 
 Automtic cleanup upon exit 



Tool 

•  Handle “standard” Hadoop command line options: 
–  -conf file - load a configuration file named file 
–  -D prop=value - define a single configuration property prop 

•  Class looks like: 
public class MyApp extends Configured implements Tool {

  public static void main(String[] args) throws Exception {

     System.exit(ToolRunner.run(new Configuration(),

                         new MyApp(), args));

  }

  public int run(String[] args) throws Exception {

     …. getConf() …

  }

}




Non-Java Interfaces 

•  Streaming 
•  Pipes (C++) 
•  Pig 



Streaming 

•  What about non-programmers? 
–  Can define Mapper and Reducer using Unix text filters 
–  Typically use grep, sed, python, or perl scripts 

•  Format for input and output is: key \t value \n 
•  Allows for easy debugging and experimentation 
•  Slower than Java programs 

bin/hadoop jar hadoop-streaming.jar -input in-dir -output out-dir

  -mapper streamingMapper.sh -reducer streamingReducer.sh 

•  Wordcount Mapper: sed -e 's| |\n|g' | grep . 
•  Wordcount Reducer: uniq -c | awk '{print $2 "\t" $1}'




Pipes (C++) 

•  C++ API and library to link application with 
•  C++ application is launched as a sub-process of the Java task 
•  Keys and values are std::string with binary data 
•  Word count map looks like: 

class WordCountMap: public HadoopPipes::Mapper {

public:

  WordCountMap(HadoopPipes::TaskContext& context){}

  void map(HadoopPipes::MapContext& context) {

    std::vector<std::string> words = 

      HadoopUtils::splitString(context.getInputValue(), " ");

    for(unsigned int i=0; i < words.size(); ++i) {

      context.emit(words[i], "1");

    }}};




Pig 

•  Scripting language that generates Map/Reduce jobs 
•  User uses higher level operations  

–  Group by 
–  Foreach 

•  Word Count: 
input = LOAD ’in-dir' USING TextLoader();

words = FOREACH input GENERATE 

FLATTEN(TOKENIZE(*));

grouped = GROUP words BY $0;

counts = FOREACH grouped GENERATE group, 

COUNT(words);

STORE counts INTO ‘out-dir’;




Hadoop Streaming 

•  Not everyone is a Java programmer 
•  Python, Perl, Shell scripts 
•  Most languages support 

– Reading from <stdin> 
– Writing to <stdout> 

•  Mapper & Reducer: External Programs 
•  Framework serializes/deserializes I/O to/

from Strings 


