| 1 | /** |
|---|
| 2 | * Program: DemoWordCondProb.java |
|---|
| 3 | * Editor: Waue Chen |
|---|
| 4 | * From : NCHC. Taiwn |
|---|
| 5 | * Last Update Date: 07/02/2008 |
|---|
| 6 | * Re-code from : Cloud9: A MapReduce Library for Hadoop |
|---|
| 7 | */ |
|---|
| 8 | /* |
|---|
| 9 | * Cloud9: A MapReduce Library for Hadoop |
|---|
| 10 | */ |
|---|
| 11 | |
|---|
| 12 | package tw.org.nchc.demo; |
|---|
| 13 | |
|---|
| 14 | import java.io.IOException; |
|---|
| 15 | import java.rmi.UnexpectedException; |
|---|
| 16 | import java.util.HashMap; |
|---|
| 17 | import java.util.Iterator; |
|---|
| 18 | import java.util.StringTokenizer; |
|---|
| 19 | |
|---|
| 20 | import org.apache.hadoop.fs.Path; |
|---|
| 21 | import org.apache.hadoop.io.FloatWritable; |
|---|
| 22 | import org.apache.hadoop.io.LongWritable; |
|---|
| 23 | import org.apache.hadoop.mapred.JobClient; |
|---|
| 24 | import org.apache.hadoop.mapred.JobConf; |
|---|
| 25 | import org.apache.hadoop.mapred.MapReduceBase; |
|---|
| 26 | import org.apache.hadoop.mapred.Mapper; |
|---|
| 27 | import org.apache.hadoop.mapred.OutputCollector; |
|---|
| 28 | import org.apache.hadoop.mapred.Partitioner; |
|---|
| 29 | import org.apache.hadoop.mapred.Reducer; |
|---|
| 30 | import org.apache.hadoop.mapred.Reporter; |
|---|
| 31 | import org.apache.hadoop.mapred.SequenceFileInputFormat; |
|---|
| 32 | import org.apache.hadoop.mapred.TextOutputFormat; |
|---|
| 33 | import org.apache.hadoop.mapred.lib.IdentityReducer; |
|---|
| 34 | |
|---|
| 35 | import tw.org.nchc.tuple.Schema; |
|---|
| 36 | import tw.org.nchc.tuple.Tuple; |
|---|
| 37 | |
|---|
| 38 | /** |
|---|
| 39 | * <p> |
|---|
| 40 | * Demo that illustrates the use of a Partitioner and special symbols in Tuple |
|---|
| 41 | * to compute conditional probabilities. Demo builds on |
|---|
| 42 | * {@link DemoWordCountTuple}, and has similar structure. Input comes from |
|---|
| 43 | * Bible+Shakespeare sample collection, encoded as single-field tuples; see |
|---|
| 44 | * {@link DemoPackRecords}. Sample of final output: |
|---|
| 45 | * |
|---|
| 46 | * <pre> |
|---|
| 47 | * ... |
|---|
| 48 | * (admirable, *) 15.0 |
|---|
| 49 | * (admirable, 0) 0.6 |
|---|
| 50 | * (admirable, 1) 0.4 |
|---|
| 51 | * (admiral, *) 6.0 |
|---|
| 52 | * (admiral, 0) 0.33333334 |
|---|
| 53 | * (admiral, 1) 0.6666667 |
|---|
| 54 | * (admiration, *) 16.0 |
|---|
| 55 | * (admiration, 0) 0.625 |
|---|
| 56 | * (admiration, 1) 0.375 |
|---|
| 57 | * (admire, *) 8.0 |
|---|
| 58 | * (admire, 0) 0.625 |
|---|
| 59 | * (admire, 1) 0.375 |
|---|
| 60 | * (admired, *) 19.0 |
|---|
| 61 | * (admired, 0) 0.6315789 |
|---|
| 62 | * (admired, 1) 0.36842105 |
|---|
| 63 | * ... |
|---|
| 64 | * </pre> |
|---|
| 65 | * |
|---|
| 66 | * <p> |
|---|
| 67 | * The first field of the key tuple contains a token. If the second field |
|---|
| 68 | * contains the special symbol '*', then the value indicates the count of the |
|---|
| 69 | * token in the collection. Otherwise, the value indicates p(EvenOrOdd|Token), |
|---|
| 70 | * the probability that a line is odd-length or even-length, given the |
|---|
| 71 | * occurrence of a token. |
|---|
| 72 | * </p> |
|---|
| 73 | */ |
|---|
| 74 | public class DemoWordCondProb { |
|---|
| 75 | |
|---|
| 76 | // create the schema for the tuple that will serve as the key |
|---|
| 77 | private static final Schema KEY_SCHEMA = new Schema(); |
|---|
| 78 | |
|---|
| 79 | // define the schema statically |
|---|
| 80 | static { |
|---|
| 81 | KEY_SCHEMA.addField("Token", String.class, ""); |
|---|
| 82 | KEY_SCHEMA.addField("EvenOrOdd", Integer.class, new Integer(1)); |
|---|
| 83 | } |
|---|
| 84 | |
|---|
| 85 | // mapper that emits tuple as the key, and value '1' for each occurrence |
|---|
| 86 | private static class MapClass extends MapReduceBase implements |
|---|
| 87 | Mapper<LongWritable, Tuple, Tuple, FloatWritable> { |
|---|
| 88 | private final static FloatWritable one = new FloatWritable(1); |
|---|
| 89 | private Tuple tupleOut = KEY_SCHEMA.instantiate(); |
|---|
| 90 | |
|---|
| 91 | public void map(LongWritable key, Tuple tupleIn, |
|---|
| 92 | OutputCollector<Tuple, FloatWritable> output, Reporter reporter) |
|---|
| 93 | throws IOException { |
|---|
| 94 | |
|---|
| 95 | // the input value is a tuple; get field 0 |
|---|
| 96 | // see DemoPackRecords of how input SequenceFile is generated |
|---|
| 97 | String line = (String) ((Tuple) tupleIn).get(0); |
|---|
| 98 | StringTokenizer itr = new StringTokenizer(line); |
|---|
| 99 | while (itr.hasMoreTokens()) { |
|---|
| 100 | String token = itr.nextToken(); |
|---|
| 101 | |
|---|
| 102 | // emit key-value pair for either even-length or odd-length line |
|---|
| 103 | tupleOut.set("Token", token); |
|---|
| 104 | tupleOut.set("EvenOrOdd", line.length() % 2); |
|---|
| 105 | output.collect(tupleOut, one); |
|---|
| 106 | |
|---|
| 107 | // emit key-value pair for the total count |
|---|
| 108 | tupleOut.set("Token", token); |
|---|
| 109 | // use special symbol in field 2 |
|---|
| 110 | tupleOut.setSymbol("EvenOrOdd", "*"); |
|---|
| 111 | output.collect(tupleOut, one); |
|---|
| 112 | } |
|---|
| 113 | } |
|---|
| 114 | } |
|---|
| 115 | |
|---|
| 116 | // reducer computes conditional probabilities |
|---|
| 117 | private static class ReduceClass extends MapReduceBase implements |
|---|
| 118 | Reducer<Tuple, FloatWritable, Tuple, FloatWritable> { |
|---|
| 119 | // HashMap keeps track of total counts |
|---|
| 120 | private final static HashMap<String, Integer> TotalCounts = new HashMap<String, Integer>(); |
|---|
| 121 | |
|---|
| 122 | public synchronized void reduce(Tuple tupleKey, |
|---|
| 123 | Iterator<FloatWritable> values, |
|---|
| 124 | OutputCollector<Tuple, FloatWritable> output, Reporter reporter) |
|---|
| 125 | throws IOException { |
|---|
| 126 | // sum values |
|---|
| 127 | int sum = 0; |
|---|
| 128 | while (values.hasNext()) { |
|---|
| 129 | sum += values.next().get(); |
|---|
| 130 | } |
|---|
| 131 | |
|---|
| 132 | String tok = (String) tupleKey.get("Token"); |
|---|
| 133 | |
|---|
| 134 | // check if the second field is a special symbol |
|---|
| 135 | if (tupleKey.containsSymbol("EvenOrOdd")) { |
|---|
| 136 | // emit total count |
|---|
| 137 | output.collect(tupleKey, new FloatWritable(sum)); |
|---|
| 138 | // record total count |
|---|
| 139 | TotalCounts.put(tok, sum); |
|---|
| 140 | } else { |
|---|
| 141 | if (!TotalCounts.containsKey(tok)) |
|---|
| 142 | throw new UnexpectedException("Don't have total counts!"); |
|---|
| 143 | |
|---|
| 144 | // divide sum by total count to obtain conditional probability |
|---|
| 145 | float p = (float) sum / TotalCounts.get(tok); |
|---|
| 146 | |
|---|
| 147 | // emit P(EvenOrOdd|Token) |
|---|
| 148 | output.collect(tupleKey, new FloatWritable(p)); |
|---|
| 149 | } |
|---|
| 150 | } |
|---|
| 151 | } |
|---|
| 152 | |
|---|
| 153 | // partition by first field of the tuple, so that tuples corresponding |
|---|
| 154 | // to the same token will be sent to the same reducer |
|---|
| 155 | private static class MyPartitioner implements |
|---|
| 156 | Partitioner<Tuple, FloatWritable> { |
|---|
| 157 | public void configure(JobConf job) { |
|---|
| 158 | } |
|---|
| 159 | |
|---|
| 160 | public int getPartition(Tuple key, FloatWritable value, |
|---|
| 161 | int numReduceTasks) { |
|---|
| 162 | return (key.get("Token").hashCode() & Integer.MAX_VALUE) |
|---|
| 163 | % numReduceTasks; |
|---|
| 164 | } |
|---|
| 165 | } |
|---|
| 166 | |
|---|
| 167 | // dummy constructor |
|---|
| 168 | private DemoWordCondProb() { |
|---|
| 169 | } |
|---|
| 170 | |
|---|
| 171 | /** |
|---|
| 172 | * Runs the demo. |
|---|
| 173 | */ |
|---|
| 174 | public static void main(String[] args) throws IOException { |
|---|
| 175 | String inPath = "/shared/sample-input/bible+shakes.nopunc.packed"; |
|---|
| 176 | String output1Path = "condprob"; |
|---|
| 177 | int numMapTasks = 20; |
|---|
| 178 | int numReduceTasks = 10; |
|---|
| 179 | |
|---|
| 180 | // first MapReduce cycle is to do the tuple counting |
|---|
| 181 | JobConf conf1 = new JobConf(DemoWordCondProb.class); |
|---|
| 182 | conf1.setJobName("DemoWordCondProb.MR1"); |
|---|
| 183 | |
|---|
| 184 | conf1.setNumMapTasks(numMapTasks); |
|---|
| 185 | conf1.setNumReduceTasks(numReduceTasks); |
|---|
| 186 | conf1.setInputPath(new Path(inPath)); |
|---|
| 187 | |
|---|
| 188 | conf1.setInputFormat(SequenceFileInputFormat.class); |
|---|
| 189 | |
|---|
| 190 | conf1.setOutputPath(new Path(output1Path)); |
|---|
| 191 | conf1.setOutputKeyClass(Tuple.class); |
|---|
| 192 | conf1.setOutputValueClass(FloatWritable.class); |
|---|
| 193 | conf1.setOutputFormat(TextOutputFormat.class); |
|---|
| 194 | |
|---|
| 195 | conf1.setMapperClass(MapClass.class); |
|---|
| 196 | // this is a potential gotcha! can't use ReduceClass for combine because |
|---|
| 197 | // we have not collected all the counts yet, so we can't divide through |
|---|
| 198 | // to compute the conditional probabilities |
|---|
| 199 | conf1.setCombinerClass(IdentityReducer.class); |
|---|
| 200 | conf1.setReducerClass(ReduceClass.class); |
|---|
| 201 | conf1.setPartitionerClass(MyPartitioner.class); |
|---|
| 202 | |
|---|
| 203 | JobClient.runJob(conf1); |
|---|
| 204 | } |
|---|
| 205 | } |
|---|